Yunyi Liang , Yonghong Luo , Yingji Wu , Xiaona Li , Quyet Van Le , Jianzhang Li , Changlei Xia
{"title":"亲核氨基酸作为甘油环氧树脂中石油化学衍生胺的可再生替代品","authors":"Yunyi Liang , Yonghong Luo , Yingji Wu , Xiaona Li , Quyet Van Le , Jianzhang Li , Changlei Xia","doi":"10.1016/j.jobab.2024.01.003","DOIUrl":null,"url":null,"abstract":"<div><p>The standard epoxy resin curing agents revealed are from unsustainable petroleum-based sources, which produce poisonous exhaust when cured. Amino acids, a bio-based epoxy curing agent with amino and carboxyl groups, are another potential curing agent. Water-soluble epoxy resins cured with lysine (Lys), glutamic acid (Glu), leucine (Leu), and serine (Ser) as amino acids were investigated. The results showed that the water-soluble epoxy resin (glycerol epoxy resins, GER) was cured with Lys and Glu after reacting. Fourier transform infrared (FT-IR) spectroscopic analysis of the GER-Lys showed that the amino and carboxyl groups of Lys primarily reacted with the epoxy groups of GER. The elongation at break of Lys-cured GER (GER-Lys) cured at 70 ℃ with a molar ratio of 1꞉0.75 was 75.32%. The fact that elongations at break of GER-Lys (79.43%) were higher than those of GER-Glu (17.33%), respectively supports the decrease of crosslinking density by the amino acid-cured GER reaction. The potential of Lys and Glu alternatives for petrochemical amines is demonstrated and provides promising opportunities for industrial application.</p></div>","PeriodicalId":52344,"journal":{"name":"Journal of Bioresources and Bioproducts","volume":null,"pages":null},"PeriodicalIF":20.2000,"publicationDate":"2024-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2369969824000148/pdfft?md5=27db72844385b0d2bb4b195e20552d24&pid=1-s2.0-S2369969824000148-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Nucleophilic amino acids as a renewable alternative to petrochemically-derived amines in glycerol epoxy resins\",\"authors\":\"Yunyi Liang , Yonghong Luo , Yingji Wu , Xiaona Li , Quyet Van Le , Jianzhang Li , Changlei Xia\",\"doi\":\"10.1016/j.jobab.2024.01.003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The standard epoxy resin curing agents revealed are from unsustainable petroleum-based sources, which produce poisonous exhaust when cured. Amino acids, a bio-based epoxy curing agent with amino and carboxyl groups, are another potential curing agent. Water-soluble epoxy resins cured with lysine (Lys), glutamic acid (Glu), leucine (Leu), and serine (Ser) as amino acids were investigated. The results showed that the water-soluble epoxy resin (glycerol epoxy resins, GER) was cured with Lys and Glu after reacting. Fourier transform infrared (FT-IR) spectroscopic analysis of the GER-Lys showed that the amino and carboxyl groups of Lys primarily reacted with the epoxy groups of GER. The elongation at break of Lys-cured GER (GER-Lys) cured at 70 ℃ with a molar ratio of 1꞉0.75 was 75.32%. The fact that elongations at break of GER-Lys (79.43%) were higher than those of GER-Glu (17.33%), respectively supports the decrease of crosslinking density by the amino acid-cured GER reaction. The potential of Lys and Glu alternatives for petrochemical amines is demonstrated and provides promising opportunities for industrial application.</p></div>\",\"PeriodicalId\":52344,\"journal\":{\"name\":\"Journal of Bioresources and Bioproducts\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":20.2000,\"publicationDate\":\"2024-01-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2369969824000148/pdfft?md5=27db72844385b0d2bb4b195e20552d24&pid=1-s2.0-S2369969824000148-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Bioresources and Bioproducts\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2369969824000148\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, PAPER & WOOD\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Bioresources and Bioproducts","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2369969824000148","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, PAPER & WOOD","Score":null,"Total":0}
Nucleophilic amino acids as a renewable alternative to petrochemically-derived amines in glycerol epoxy resins
The standard epoxy resin curing agents revealed are from unsustainable petroleum-based sources, which produce poisonous exhaust when cured. Amino acids, a bio-based epoxy curing agent with amino and carboxyl groups, are another potential curing agent. Water-soluble epoxy resins cured with lysine (Lys), glutamic acid (Glu), leucine (Leu), and serine (Ser) as amino acids were investigated. The results showed that the water-soluble epoxy resin (glycerol epoxy resins, GER) was cured with Lys and Glu after reacting. Fourier transform infrared (FT-IR) spectroscopic analysis of the GER-Lys showed that the amino and carboxyl groups of Lys primarily reacted with the epoxy groups of GER. The elongation at break of Lys-cured GER (GER-Lys) cured at 70 ℃ with a molar ratio of 1꞉0.75 was 75.32%. The fact that elongations at break of GER-Lys (79.43%) were higher than those of GER-Glu (17.33%), respectively supports the decrease of crosslinking density by the amino acid-cured GER reaction. The potential of Lys and Glu alternatives for petrochemical amines is demonstrated and provides promising opportunities for industrial application.