瑀和锑三元四面体半导体的热力学性质

IF 1.2 4区 材料科学 Q4 MATERIALS SCIENCE, MULTIDISCIPLINARY
S. Pal, D. Sharma, M. Chandra, M. Mittal, P. Singh, M. Lal, A. S. Verma
{"title":"瑀和锑三元四面体半导体的热力学性质","authors":"S. Pal, D. Sharma, M. Chandra, M. Mittal, P. Singh, M. Lal, A. S. Verma","doi":"10.15251/cl.2024.211.1","DOIUrl":null,"url":null,"abstract":"In this paper, we present thermodynamic properties such as heat of formation, heat of fusion and entropy of fusion for chalcopyrite structured solids with the product of ionic charges and nearest neighbour distance d (Å). The heat of formation (∆Hf) of these compounds exhibit a linear relationship when plotted on a log-log scale against the nearest neighbour distance d (Å), but fall on different straight lines according to the ionic charge product of the compounds. On the basis of this result two simple heat of formation (∆Hf)heat of fusion (∆HF), and heat of formation (∆Hf)entropy of fusion (∆SF), relationship are proposed and used to estimate the heat of fusion (∆HF) and entropy of fusion (∆SF) of these semiconductors. We have applied the proposed relation to AIIBIVC2 V and AI BIIIC2 VI chalcopyrite semiconductor and found a better agreement with the experimental data than the values found by earlier researchers. The results for heat of formation differ from experimental values by the following amounts: 0.3% (CuGaSe2), 6.7% (CuInSe2), 5% (AgInSe2), 5% (ZnGeP2), 6% (ZnGeP2), 0.4% (ZnSnP2), 0.7% (ZnSiAs2), 2.6% (ZnGeAs2), 1.2% (ZnSnAs2), 3.8% (CdGeP2), 6.4% (CdGeAs2), the results for heat of fusion differ from experimental values by the following amounts: 2.6% (CuGaS2), 0.6% (CuInTe2), 6% (ZnGeAs2), 8.8% (ZnSiAs2) and the results for entropy of fusion differ from experimental values by the following amounts: 6% (CuInSe2), 8% (CdSiP2).","PeriodicalId":9710,"journal":{"name":"Chalcogenide Letters","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Thermodynamic properties of chalcogenide and pnictide ternary tetrahedral semiconductors\",\"authors\":\"S. Pal, D. Sharma, M. Chandra, M. Mittal, P. Singh, M. Lal, A. S. Verma\",\"doi\":\"10.15251/cl.2024.211.1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we present thermodynamic properties such as heat of formation, heat of fusion and entropy of fusion for chalcopyrite structured solids with the product of ionic charges and nearest neighbour distance d (Å). The heat of formation (∆Hf) of these compounds exhibit a linear relationship when plotted on a log-log scale against the nearest neighbour distance d (Å), but fall on different straight lines according to the ionic charge product of the compounds. On the basis of this result two simple heat of formation (∆Hf)heat of fusion (∆HF), and heat of formation (∆Hf)entropy of fusion (∆SF), relationship are proposed and used to estimate the heat of fusion (∆HF) and entropy of fusion (∆SF) of these semiconductors. We have applied the proposed relation to AIIBIVC2 V and AI BIIIC2 VI chalcopyrite semiconductor and found a better agreement with the experimental data than the values found by earlier researchers. The results for heat of formation differ from experimental values by the following amounts: 0.3% (CuGaSe2), 6.7% (CuInSe2), 5% (AgInSe2), 5% (ZnGeP2), 6% (ZnGeP2), 0.4% (ZnSnP2), 0.7% (ZnSiAs2), 2.6% (ZnGeAs2), 1.2% (ZnSnAs2), 3.8% (CdGeP2), 6.4% (CdGeAs2), the results for heat of fusion differ from experimental values by the following amounts: 2.6% (CuGaS2), 0.6% (CuInTe2), 6% (ZnGeAs2), 8.8% (ZnSiAs2) and the results for entropy of fusion differ from experimental values by the following amounts: 6% (CuInSe2), 8% (CdSiP2).\",\"PeriodicalId\":9710,\"journal\":{\"name\":\"Chalcogenide Letters\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chalcogenide Letters\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.15251/cl.2024.211.1\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chalcogenide Letters","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.15251/cl.2024.211.1","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了黄铜矿结构固体的热力学性质,如离子电荷与近邻距离 d(埃)的乘积的形成热、熔解热和熔解熵。这些化合物的形成热(ΔHf)与近邻距离 d(埃)在对数-对数刻度上呈线性关系,但根据化合物的离子电荷乘积不同,其直线落点也不同。在此基础上,我们提出了两种简单的形成热(ΔHf) 熔合热(ΔHF)和形成热(ΔHf) 熔合熵(ΔSF)关系,并用它们来估算这些半导体的熔合热(ΔHF)和熔合熵(ΔSF)。我们将所提出的关系式应用于 AIIBIVC2 V 和 AI BIIIC2 VI 黄铜矿半导体,发现其与实验数据的吻合程度优于早期研究人员发现的数值。形成热的结果与实验值的差异如下:0.3%(CuGaSe2)、6.7%(CuInSe2)、5%(AgInSe2)、5%(ZnGeP2)、6%(ZnGeP2)、0.4%(ZnSnP2)、0.7%(ZnSiAs2)、2.6%(ZnGeAs2)、1.2% (ZnSnAs2)、3.8% (CdGeP2)、6.4% (CdGeAs2):2.6% (CuGaS2)、0.6% (CuInTe2)、6% (ZnGeAs2)、8.8% (ZnSiAs2),熔化熵的结果与实验值相差如下:6% (CuInSe2)、3.8% (CdGeP2)、6.4% (CdGeAs2):6%(CuInSe2)、8%(CdSiP2)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Thermodynamic properties of chalcogenide and pnictide ternary tetrahedral semiconductors
In this paper, we present thermodynamic properties such as heat of formation, heat of fusion and entropy of fusion for chalcopyrite structured solids with the product of ionic charges and nearest neighbour distance d (Å). The heat of formation (∆Hf) of these compounds exhibit a linear relationship when plotted on a log-log scale against the nearest neighbour distance d (Å), but fall on different straight lines according to the ionic charge product of the compounds. On the basis of this result two simple heat of formation (∆Hf)heat of fusion (∆HF), and heat of formation (∆Hf)entropy of fusion (∆SF), relationship are proposed and used to estimate the heat of fusion (∆HF) and entropy of fusion (∆SF) of these semiconductors. We have applied the proposed relation to AIIBIVC2 V and AI BIIIC2 VI chalcopyrite semiconductor and found a better agreement with the experimental data than the values found by earlier researchers. The results for heat of formation differ from experimental values by the following amounts: 0.3% (CuGaSe2), 6.7% (CuInSe2), 5% (AgInSe2), 5% (ZnGeP2), 6% (ZnGeP2), 0.4% (ZnSnP2), 0.7% (ZnSiAs2), 2.6% (ZnGeAs2), 1.2% (ZnSnAs2), 3.8% (CdGeP2), 6.4% (CdGeAs2), the results for heat of fusion differ from experimental values by the following amounts: 2.6% (CuGaS2), 0.6% (CuInTe2), 6% (ZnGeAs2), 8.8% (ZnSiAs2) and the results for entropy of fusion differ from experimental values by the following amounts: 6% (CuInSe2), 8% (CdSiP2).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chalcogenide Letters
Chalcogenide Letters MATERIALS SCIENCE, MULTIDISCIPLINARY-PHYSICS, APPLIED
CiteScore
1.80
自引率
20.00%
发文量
86
审稿时长
1 months
期刊介绍: Chalcogenide Letters (CHL) has the aim to publish rapidly papers in chalcogenide field of research and appears with twelve issues per year. The journal is open to letters, short communications and breakings news inserted as Short Notes, in the field of chalcogenide materials either amorphous or crystalline. Short papers in structure, properties and applications, as well as those covering special properties in nano-structured chalcogenides are admitted.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信