Isaac Slaughter , Jagir Laxmichand Charla , Martin Siderius , John Lipor
{"title":"利用递归神经网络进行船舶轨迹预测:对数据集、特征和架构的评估","authors":"Isaac Slaughter , Jagir Laxmichand Charla , Martin Siderius , John Lipor","doi":"10.1016/j.joes.2024.01.002","DOIUrl":null,"url":null,"abstract":"<div><div>Maritime situational awareness tasks such as port management, collision avoidance, and search-and-rescue missions rely on accurate knowledge of vessel locations. The availability of historical vessel trajectory data through the Automatic Identification System (AIS) has enabled the development of prediction methods, with a recent focus on trajectory prediction via recurrent neural networks (RNNs) and other deep learning architectures. While these methods have shown promising performance benefits over kinematic and clustering-based models, comparing among RNN-based models remains difficult due to variations in evaluation datasets, region sizes, vessel types, and numerous other design choices. As a result, it is not clear whether recent methods based on highly-sophisticated network architectures are necessary to achieve strong prediction performance. In this work, we present a simple fusion-based RNN approach to vessel trajectory prediction that allows for easy incorporation of exogenous variables. We perform an extensive ablation study to measure the impact of various modeling choices, including preprocessing, loss functions, and the choice of features, as well as the first usage of surface current information in vessel trajectory prediction. We demonstrate that our approach achieves state-of-the-art performance on three large regions off the United States coast, obtaining an improvement of up to 0.88 km over competing methods when predicting three hours into the future. We conclude that our simple architecture can outperform more complicated architectures while incurring a lower memory cost. Further, we show that the choice of loss function and the inclusion of surface current information both have significant impact on prediction performance.</div></div>","PeriodicalId":48514,"journal":{"name":"Journal of Ocean Engineering and Science","volume":"10 2","pages":"Pages 229-238"},"PeriodicalIF":13.0000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Vessel trajectory prediction with recurrent neural networks: An evaluation of datasets, features, and architectures\",\"authors\":\"Isaac Slaughter , Jagir Laxmichand Charla , Martin Siderius , John Lipor\",\"doi\":\"10.1016/j.joes.2024.01.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Maritime situational awareness tasks such as port management, collision avoidance, and search-and-rescue missions rely on accurate knowledge of vessel locations. The availability of historical vessel trajectory data through the Automatic Identification System (AIS) has enabled the development of prediction methods, with a recent focus on trajectory prediction via recurrent neural networks (RNNs) and other deep learning architectures. While these methods have shown promising performance benefits over kinematic and clustering-based models, comparing among RNN-based models remains difficult due to variations in evaluation datasets, region sizes, vessel types, and numerous other design choices. As a result, it is not clear whether recent methods based on highly-sophisticated network architectures are necessary to achieve strong prediction performance. In this work, we present a simple fusion-based RNN approach to vessel trajectory prediction that allows for easy incorporation of exogenous variables. We perform an extensive ablation study to measure the impact of various modeling choices, including preprocessing, loss functions, and the choice of features, as well as the first usage of surface current information in vessel trajectory prediction. We demonstrate that our approach achieves state-of-the-art performance on three large regions off the United States coast, obtaining an improvement of up to 0.88 km over competing methods when predicting three hours into the future. We conclude that our simple architecture can outperform more complicated architectures while incurring a lower memory cost. Further, we show that the choice of loss function and the inclusion of surface current information both have significant impact on prediction performance.</div></div>\",\"PeriodicalId\":48514,\"journal\":{\"name\":\"Journal of Ocean Engineering and Science\",\"volume\":\"10 2\",\"pages\":\"Pages 229-238\"},\"PeriodicalIF\":13.0000,\"publicationDate\":\"2025-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Ocean Engineering and Science\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2468013324000081\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MARINE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Ocean Engineering and Science","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468013324000081","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MARINE","Score":null,"Total":0}
Vessel trajectory prediction with recurrent neural networks: An evaluation of datasets, features, and architectures
Maritime situational awareness tasks such as port management, collision avoidance, and search-and-rescue missions rely on accurate knowledge of vessel locations. The availability of historical vessel trajectory data through the Automatic Identification System (AIS) has enabled the development of prediction methods, with a recent focus on trajectory prediction via recurrent neural networks (RNNs) and other deep learning architectures. While these methods have shown promising performance benefits over kinematic and clustering-based models, comparing among RNN-based models remains difficult due to variations in evaluation datasets, region sizes, vessel types, and numerous other design choices. As a result, it is not clear whether recent methods based on highly-sophisticated network architectures are necessary to achieve strong prediction performance. In this work, we present a simple fusion-based RNN approach to vessel trajectory prediction that allows for easy incorporation of exogenous variables. We perform an extensive ablation study to measure the impact of various modeling choices, including preprocessing, loss functions, and the choice of features, as well as the first usage of surface current information in vessel trajectory prediction. We demonstrate that our approach achieves state-of-the-art performance on three large regions off the United States coast, obtaining an improvement of up to 0.88 km over competing methods when predicting three hours into the future. We conclude that our simple architecture can outperform more complicated architectures while incurring a lower memory cost. Further, we show that the choice of loss function and the inclusion of surface current information both have significant impact on prediction performance.
期刊介绍:
The Journal of Ocean Engineering and Science (JOES) serves as a platform for disseminating original research and advancements in the realm of ocean engineering and science.
JOES encourages the submission of papers covering various aspects of ocean engineering and science.