Pengfei Zhao , Shuangqi Li , Zhidong Cao , Paul Jen-Hwa Hu , Daniel Dajun Zeng , Da Xie , Yichen Shen , Jiangfeng Li , Tianyi Luo
{"title":"能源安全的社会计算方法","authors":"Pengfei Zhao , Shuangqi Li , Zhidong Cao , Paul Jen-Hwa Hu , Daniel Dajun Zeng , Da Xie , Yichen Shen , Jiangfeng Li , Tianyi Luo","doi":"10.1016/j.jnlssr.2023.12.001","DOIUrl":null,"url":null,"abstract":"<div><p>Information and communication technologies enable the transformation of traditional energy systems into cyber-physical energy systems (CPESs), but such systems have also become popular targets of cyberattacks. Currently, available methods for evaluating the impacts of cyberattacks suffer from limited resilience, efficacy, and practical value. To mitigate their potentially disastrous consequences, this study suggests a two-stage, discrepancy-based optimization approach that considers both preparatory actions and response measures, integrating concepts from social computing. The proposed Kullback-Leibler divergence-based, distributionally robust optimization (KDR) method has a hierarchical, two-stage objective function that incorporates the operating costs of both system infrastructures (e.g., energy resources, reserve capacity) and real-time response measures (e.g., load shedding, demand-side management, electric vehicle charging station management). By incorporating social computing principles, the optimization framework can also capture the social behavior and interactions of energy consumers in response to cyberattacks. The preparatory stage entails day-ahead operational decisions, leveraging insights from social computing to model and predict the behaviors of individuals and communities affected by potential cyberattacks. The mitigation stage generates responses designed to contain the consequences of the attack by directing and optimizing energy use from the demand side, taking into account the social context and preferences of energy consumers, to ensure resilient, economically efficient CPES operations. Our method can determine optimal schemes in both stages, accounting for the social dimensions of the problem. An original disaster mitigation model uses an abstract formulation to develop a risk-neutral model that characterizes cyberattacks through KDR, incorporating social computing techniques to enhance the understanding and response to cyber threats. This approach can mitigate the impacts more effectively than several existing methods, even with limited data availability. To extend this risk-neutral model, we incorporate conditional value at risk as an essential risk measure, capturing the uncertainty and diverse impact scenarios arising from social computing factors. The empirical results affirm that the KDR method, which is enriched with social computing considerations, produces resilient, economically efficient solutions for managing the impacts of cyberattacks on a CPES. By integrating social computing principles into the optimization framework, it becomes possible to better anticipate and address the social and behavioral aspects associated with cyberattacks on CPESs, ultimately improving the overall resilience and effectiveness of the system's response measures.</p></div>","PeriodicalId":62710,"journal":{"name":"安全科学与韧性(英文)","volume":null,"pages":null},"PeriodicalIF":3.7000,"publicationDate":"2024-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666449624000021/pdfft?md5=ee0b546ba126233207f393bc1858e3fd&pid=1-s2.0-S2666449624000021-main.pdf","citationCount":"0","resultStr":"{\"title\":\"A social computing method for energy safety\",\"authors\":\"Pengfei Zhao , Shuangqi Li , Zhidong Cao , Paul Jen-Hwa Hu , Daniel Dajun Zeng , Da Xie , Yichen Shen , Jiangfeng Li , Tianyi Luo\",\"doi\":\"10.1016/j.jnlssr.2023.12.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Information and communication technologies enable the transformation of traditional energy systems into cyber-physical energy systems (CPESs), but such systems have also become popular targets of cyberattacks. Currently, available methods for evaluating the impacts of cyberattacks suffer from limited resilience, efficacy, and practical value. To mitigate their potentially disastrous consequences, this study suggests a two-stage, discrepancy-based optimization approach that considers both preparatory actions and response measures, integrating concepts from social computing. The proposed Kullback-Leibler divergence-based, distributionally robust optimization (KDR) method has a hierarchical, two-stage objective function that incorporates the operating costs of both system infrastructures (e.g., energy resources, reserve capacity) and real-time response measures (e.g., load shedding, demand-side management, electric vehicle charging station management). By incorporating social computing principles, the optimization framework can also capture the social behavior and interactions of energy consumers in response to cyberattacks. The preparatory stage entails day-ahead operational decisions, leveraging insights from social computing to model and predict the behaviors of individuals and communities affected by potential cyberattacks. The mitigation stage generates responses designed to contain the consequences of the attack by directing and optimizing energy use from the demand side, taking into account the social context and preferences of energy consumers, to ensure resilient, economically efficient CPES operations. Our method can determine optimal schemes in both stages, accounting for the social dimensions of the problem. An original disaster mitigation model uses an abstract formulation to develop a risk-neutral model that characterizes cyberattacks through KDR, incorporating social computing techniques to enhance the understanding and response to cyber threats. This approach can mitigate the impacts more effectively than several existing methods, even with limited data availability. To extend this risk-neutral model, we incorporate conditional value at risk as an essential risk measure, capturing the uncertainty and diverse impact scenarios arising from social computing factors. The empirical results affirm that the KDR method, which is enriched with social computing considerations, produces resilient, economically efficient solutions for managing the impacts of cyberattacks on a CPES. By integrating social computing principles into the optimization framework, it becomes possible to better anticipate and address the social and behavioral aspects associated with cyberattacks on CPESs, ultimately improving the overall resilience and effectiveness of the system's response measures.</p></div>\",\"PeriodicalId\":62710,\"journal\":{\"name\":\"安全科学与韧性(英文)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-01-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2666449624000021/pdfft?md5=ee0b546ba126233207f393bc1858e3fd&pid=1-s2.0-S2666449624000021-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"安全科学与韧性(英文)\",\"FirstCategoryId\":\"1087\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666449624000021\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"安全科学与韧性(英文)","FirstCategoryId":"1087","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666449624000021","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH","Score":null,"Total":0}
Information and communication technologies enable the transformation of traditional energy systems into cyber-physical energy systems (CPESs), but such systems have also become popular targets of cyberattacks. Currently, available methods for evaluating the impacts of cyberattacks suffer from limited resilience, efficacy, and practical value. To mitigate their potentially disastrous consequences, this study suggests a two-stage, discrepancy-based optimization approach that considers both preparatory actions and response measures, integrating concepts from social computing. The proposed Kullback-Leibler divergence-based, distributionally robust optimization (KDR) method has a hierarchical, two-stage objective function that incorporates the operating costs of both system infrastructures (e.g., energy resources, reserve capacity) and real-time response measures (e.g., load shedding, demand-side management, electric vehicle charging station management). By incorporating social computing principles, the optimization framework can also capture the social behavior and interactions of energy consumers in response to cyberattacks. The preparatory stage entails day-ahead operational decisions, leveraging insights from social computing to model and predict the behaviors of individuals and communities affected by potential cyberattacks. The mitigation stage generates responses designed to contain the consequences of the attack by directing and optimizing energy use from the demand side, taking into account the social context and preferences of energy consumers, to ensure resilient, economically efficient CPES operations. Our method can determine optimal schemes in both stages, accounting for the social dimensions of the problem. An original disaster mitigation model uses an abstract formulation to develop a risk-neutral model that characterizes cyberattacks through KDR, incorporating social computing techniques to enhance the understanding and response to cyber threats. This approach can mitigate the impacts more effectively than several existing methods, even with limited data availability. To extend this risk-neutral model, we incorporate conditional value at risk as an essential risk measure, capturing the uncertainty and diverse impact scenarios arising from social computing factors. The empirical results affirm that the KDR method, which is enriched with social computing considerations, produces resilient, economically efficient solutions for managing the impacts of cyberattacks on a CPES. By integrating social computing principles into the optimization framework, it becomes possible to better anticipate and address the social and behavioral aspects associated with cyberattacks on CPESs, ultimately improving the overall resilience and effectiveness of the system's response measures.