使用构成分析和语义网技术的会计分类系统

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Chang-Wei Li, Chi-Chun Chou, Ju-Chun Yen
{"title":"使用构成分析和语义网技术的会计分类系统","authors":"Chang-Wei Li, Chi-Chun Chou, Ju-Chun Yen","doi":"10.2308/isys-2023-005","DOIUrl":null,"url":null,"abstract":"\n To aid accountants in making professional judgments and decisions regarding the accounting methods for transactions, we propose a classification system by integrating computational linguistics with semantic web technologies. We use constituency parsing to convert the classification rules in accounting standards into a machine-processable data structure: Resource Description Framework (RDF) triples. When an accounting classification question is input, the system converts it into an RDF triple, compares it with the established triples of different accounting methods, and subsequently identifies the most appropriate accounting method. We showcased and evaluated our proposed model using IFRS 9 and IAS 28. Our study provides both scholarly and practical applications by (1) incorporating computational linguistics and semantic web technologies to create an interpretable, process-traceable, and explainable classification system aligned with regulatory requirements; and (2) proving that the knowledge-based model can be established without substantial training data, enhancing its accessibility and utility for accounting professionals.\n Data Availability: Data are available from the authors upon request.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Accounting Classification System Using Constituency Analysis and Semantic Web Technologies\",\"authors\":\"Chang-Wei Li, Chi-Chun Chou, Ju-Chun Yen\",\"doi\":\"10.2308/isys-2023-005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n To aid accountants in making professional judgments and decisions regarding the accounting methods for transactions, we propose a classification system by integrating computational linguistics with semantic web technologies. We use constituency parsing to convert the classification rules in accounting standards into a machine-processable data structure: Resource Description Framework (RDF) triples. When an accounting classification question is input, the system converts it into an RDF triple, compares it with the established triples of different accounting methods, and subsequently identifies the most appropriate accounting method. We showcased and evaluated our proposed model using IFRS 9 and IAS 28. Our study provides both scholarly and practical applications by (1) incorporating computational linguistics and semantic web technologies to create an interpretable, process-traceable, and explainable classification system aligned with regulatory requirements; and (2) proving that the knowledge-based model can be established without substantial training data, enhancing its accessibility and utility for accounting professionals.\\n Data Availability: Data are available from the authors upon request.\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"91\",\"ListUrlMain\":\"https://doi.org/10.2308/isys-2023-005\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"91","ListUrlMain":"https://doi.org/10.2308/isys-2023-005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

为了帮助会计师对交易的会计方法做出专业判断和决策,我们提出了一个将计算语言学与语义网络技术相结合的分类系统。我们使用成分解析法将会计准则中的分类规则转换为机器可处理的数据结构:资源描述框架(RDF)三元组。当输入一个会计分类问题时,系统会将其转换为 RDF 三元组,并将其与不同会计方法的既定三元组进行比较,然后确定最合适的会计方法。我们使用《国际财务报告准则》第 9 条和《国际会计准则》第 28 条展示并评估了我们提出的模型。我们的研究通过以下方式提供了学术和实际应用:(1)结合计算语言学和语义网技术,创建一个可解释、可追溯流程、可解释的分类系统,并与监管要求保持一致;(2)证明基于知识的模型无需大量训练数据即可建立,从而提高了其对会计专业人员的可及性和实用性。数据可用性:数据可向作者索取。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Accounting Classification System Using Constituency Analysis and Semantic Web Technologies
To aid accountants in making professional judgments and decisions regarding the accounting methods for transactions, we propose a classification system by integrating computational linguistics with semantic web technologies. We use constituency parsing to convert the classification rules in accounting standards into a machine-processable data structure: Resource Description Framework (RDF) triples. When an accounting classification question is input, the system converts it into an RDF triple, compares it with the established triples of different accounting methods, and subsequently identifies the most appropriate accounting method. We showcased and evaluated our proposed model using IFRS 9 and IAS 28. Our study provides both scholarly and practical applications by (1) incorporating computational linguistics and semantic web technologies to create an interpretable, process-traceable, and explainable classification system aligned with regulatory requirements; and (2) proving that the knowledge-based model can be established without substantial training data, enhancing its accessibility and utility for accounting professionals. Data Availability: Data are available from the authors upon request.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信