在全球现有海上风电场中整合浮动光伏的地理限制资源潜力

IF 13 Q1 ENERGY & FUELS
Yubin Jin , Zhenzhong Zeng , Yuntian Chen , Rongrong Xu , Alan D. Ziegler , Wenchuang Chen , Bin Ye , Dongxiao Zhang
{"title":"在全球现有海上风电场中整合浮动光伏的地理限制资源潜力","authors":"Yubin Jin ,&nbsp;Zhenzhong Zeng ,&nbsp;Yuntian Chen ,&nbsp;Rongrong Xu ,&nbsp;Alan D. Ziegler ,&nbsp;Wenchuang Chen ,&nbsp;Bin Ye ,&nbsp;Dongxiao Zhang","doi":"10.1016/j.adapen.2024.100163","DOIUrl":null,"url":null,"abstract":"<div><p>Marine renewable energy is gaining prominence as a crucial component of the energy supply in coastal cities due to proximity and minimal land requirements. The synergistic potential of integrating floating photovoltaics with offshore wind turbines presents an encouraging avenue for boosting power production, amplifying spatial energy generation density, and mitigating seasonal output fluctuations. While the global promise of offshore wind-photovoltaic hybrid systems is evident, a definitive understanding of their potential remains elusive. Here, we evaluate the resource potential of the hybrid systems under geographical constraints, offering insights into sustainable and efficient offshore energy solutions. We compile a database with 11,198 offshore wind turbine locations from Sentinel-1 imagery and technical parameters from commercial project details. Our analysis reveals an underutilization of spatial resources within existing offshore wind farms, yielding a modest 26 kWh per square meter. Furthermore, employing realistic climate-driven system simulations, we find an impressive potential photovoltaic generation of 1372 ± 18 TWh annually, over seven times higher than the current offshore wind capacity. Notably, floating photovoltaics demonstrated remarkable efficiency, matching wind turbine output with a mere 17 % of the wind farm area and achieving an average 76 % increase in power generation at equivalent investment costs. Additionally, the hybrid wind and photovoltaic systems exhibit monthly-scale complementarity, reflected by a Pearson correlation coefficient of -0.78, providing a consistent and reliable power supply. These findings support the notion that hybrid offshore renewable energy could revolutionize the renewable energy industry, optimize energy structures, and contribute to a sustainable future for coastal cities.</p></div>","PeriodicalId":34615,"journal":{"name":"Advances in Applied Energy","volume":"13 ","pages":"Article 100163"},"PeriodicalIF":13.0000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666792424000015/pdfft?md5=76e91364e8313daf52e2fc98c7dba1dd&pid=1-s2.0-S2666792424000015-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Geographically constrained resource potential of integrating floating photovoltaics in global existing offshore wind farms\",\"authors\":\"Yubin Jin ,&nbsp;Zhenzhong Zeng ,&nbsp;Yuntian Chen ,&nbsp;Rongrong Xu ,&nbsp;Alan D. Ziegler ,&nbsp;Wenchuang Chen ,&nbsp;Bin Ye ,&nbsp;Dongxiao Zhang\",\"doi\":\"10.1016/j.adapen.2024.100163\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Marine renewable energy is gaining prominence as a crucial component of the energy supply in coastal cities due to proximity and minimal land requirements. The synergistic potential of integrating floating photovoltaics with offshore wind turbines presents an encouraging avenue for boosting power production, amplifying spatial energy generation density, and mitigating seasonal output fluctuations. While the global promise of offshore wind-photovoltaic hybrid systems is evident, a definitive understanding of their potential remains elusive. Here, we evaluate the resource potential of the hybrid systems under geographical constraints, offering insights into sustainable and efficient offshore energy solutions. We compile a database with 11,198 offshore wind turbine locations from Sentinel-1 imagery and technical parameters from commercial project details. Our analysis reveals an underutilization of spatial resources within existing offshore wind farms, yielding a modest 26 kWh per square meter. Furthermore, employing realistic climate-driven system simulations, we find an impressive potential photovoltaic generation of 1372 ± 18 TWh annually, over seven times higher than the current offshore wind capacity. Notably, floating photovoltaics demonstrated remarkable efficiency, matching wind turbine output with a mere 17 % of the wind farm area and achieving an average 76 % increase in power generation at equivalent investment costs. Additionally, the hybrid wind and photovoltaic systems exhibit monthly-scale complementarity, reflected by a Pearson correlation coefficient of -0.78, providing a consistent and reliable power supply. These findings support the notion that hybrid offshore renewable energy could revolutionize the renewable energy industry, optimize energy structures, and contribute to a sustainable future for coastal cities.</p></div>\",\"PeriodicalId\":34615,\"journal\":{\"name\":\"Advances in Applied Energy\",\"volume\":\"13 \",\"pages\":\"Article 100163\"},\"PeriodicalIF\":13.0000,\"publicationDate\":\"2024-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2666792424000015/pdfft?md5=76e91364e8313daf52e2fc98c7dba1dd&pid=1-s2.0-S2666792424000015-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Applied Energy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666792424000015\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Applied Energy","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666792424000015","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

海洋可再生能源由于距离近、对土地要求低,正逐渐成为沿海城市能源供应的重要组成部分。将漂浮光伏发电与海上风力涡轮机集成的协同潜力为提高发电量、扩大空间能源发电密度和缓解季节性输出波动提供了令人鼓舞的途径。虽然近海风能-光伏发电混合系统的全球前景显而易见,但对其潜力的确切了解仍然遥遥无期。在此,我们评估了混合系统在地理限制条件下的资源潜力,为可持续和高效的近海能源解决方案提供了见解。我们建立了一个数据库,其中包含来自哨兵-1 图像的 11,198 个海上风力涡轮机位置,以及来自商业项目详细信息的技术参数。我们的分析表明,现有海上风电场的空间资源利用率不足,每平方米仅能产生 26 千瓦时的电量。此外,通过采用现实的气候驱动系统模拟,我们发现光伏发电的潜在年发电量高达 1372 ± 18 太瓦时,是目前海上风力发电能力的七倍多。值得注意的是,浮动光伏发电表现出卓越的效率,仅用 17% 的风电场面积就能达到风力涡轮机的发电量,并且在投资成本相当的情况下,发电量平均增加了 76%。此外,风电和光伏发电混合系统呈现出月度互补性,皮尔逊相关系数为-0.78,可提供稳定可靠的电力供应。这些研究结果支持这样一种观点,即混合型海上可再生能源可以彻底改变可再生能源产业,优化能源结构,并为沿海城市的可持续未来做出贡献。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Geographically constrained resource potential of integrating floating photovoltaics in global existing offshore wind farms

Geographically constrained resource potential of integrating floating photovoltaics in global existing offshore wind farms

Marine renewable energy is gaining prominence as a crucial component of the energy supply in coastal cities due to proximity and minimal land requirements. The synergistic potential of integrating floating photovoltaics with offshore wind turbines presents an encouraging avenue for boosting power production, amplifying spatial energy generation density, and mitigating seasonal output fluctuations. While the global promise of offshore wind-photovoltaic hybrid systems is evident, a definitive understanding of their potential remains elusive. Here, we evaluate the resource potential of the hybrid systems under geographical constraints, offering insights into sustainable and efficient offshore energy solutions. We compile a database with 11,198 offshore wind turbine locations from Sentinel-1 imagery and technical parameters from commercial project details. Our analysis reveals an underutilization of spatial resources within existing offshore wind farms, yielding a modest 26 kWh per square meter. Furthermore, employing realistic climate-driven system simulations, we find an impressive potential photovoltaic generation of 1372 ± 18 TWh annually, over seven times higher than the current offshore wind capacity. Notably, floating photovoltaics demonstrated remarkable efficiency, matching wind turbine output with a mere 17 % of the wind farm area and achieving an average 76 % increase in power generation at equivalent investment costs. Additionally, the hybrid wind and photovoltaic systems exhibit monthly-scale complementarity, reflected by a Pearson correlation coefficient of -0.78, providing a consistent and reliable power supply. These findings support the notion that hybrid offshore renewable energy could revolutionize the renewable energy industry, optimize energy structures, and contribute to a sustainable future for coastal cities.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advances in Applied Energy
Advances in Applied Energy Energy-General Energy
CiteScore
23.90
自引率
0.00%
发文量
36
审稿时长
21 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信