Yanxiao Sun , Zhenxiong Jiang , Liyuan Tong , Jiawei Sun , Jia Cui , Xin Zhou , Songyu Liu
{"title":"利用模拟优化方法优化长深度挖掘的承压含水层脱水工程","authors":"Yanxiao Sun , Zhenxiong Jiang , Liyuan Tong , Jiawei Sun , Jia Cui , Xin Zhou , Songyu Liu","doi":"10.1016/j.undsp.2023.11.009","DOIUrl":null,"url":null,"abstract":"<div><p>The confined aquifer dewatering for long-deep excavations usually encounters challenges due to complicated geotechnical conditions, large excavation sizes, and high hydraulic pressures. To propose the most efficient scheme of confined aquifer dewatering for long-deep excavations, dewatering optimizations were performed using the simulation–optimization method. An open cut tunnel of the Jiangyin-Jingjiang Yangtze River Tunnel Project was taken as an example. The methods of finite element and linear programming (LP) were combined to optimize the dewatering process. A three-dimensional finite element model was developed. After simulating the pumping tests, hydraulic conductivity was inverted. Then, necessary parameters in the LP method were determined by simulating dewatering with each pumping well, and various LP models were developed based on some important influence factors such as dewatering sequence, considered pumping wells, and pumping rate limitation. Finally, the optimal pumping rates were solved and applied to the numerical model, with induced drawdown and ground settlement computed for comparison. The results indicate that the optimization can significantly reduce the required wells in the original design. Dewatering in the deepest zone exhibits the highest efficiency for long-deep excavations with gradually varying depths. For the dewatering sequence from the shallowest to the deepest zone, more pumping wells are required but less energy is consumed. Higher quantity and more advantageous locations of pumping wells in the LP model usually result in lower total pumping rate, drawdown, and ground settlement. If more pumping wells are considered in the deepest zone, pumping rate limitation of single well will only slightly increase the total pumping rate, number of required pumping wells, drawdown, and ground settlement.</p></div>","PeriodicalId":48505,"journal":{"name":"Underground Space","volume":"17 ","pages":"Pages 246-266"},"PeriodicalIF":8.2000,"publicationDate":"2024-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2467967424000072/pdfft?md5=7fde955b8101d15c426b98c22dc3ed69&pid=1-s2.0-S2467967424000072-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Optimization of confined aquifer dewatering for long-deep excavation using simulation–optimization method\",\"authors\":\"Yanxiao Sun , Zhenxiong Jiang , Liyuan Tong , Jiawei Sun , Jia Cui , Xin Zhou , Songyu Liu\",\"doi\":\"10.1016/j.undsp.2023.11.009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The confined aquifer dewatering for long-deep excavations usually encounters challenges due to complicated geotechnical conditions, large excavation sizes, and high hydraulic pressures. To propose the most efficient scheme of confined aquifer dewatering for long-deep excavations, dewatering optimizations were performed using the simulation–optimization method. An open cut tunnel of the Jiangyin-Jingjiang Yangtze River Tunnel Project was taken as an example. The methods of finite element and linear programming (LP) were combined to optimize the dewatering process. A three-dimensional finite element model was developed. After simulating the pumping tests, hydraulic conductivity was inverted. Then, necessary parameters in the LP method were determined by simulating dewatering with each pumping well, and various LP models were developed based on some important influence factors such as dewatering sequence, considered pumping wells, and pumping rate limitation. Finally, the optimal pumping rates were solved and applied to the numerical model, with induced drawdown and ground settlement computed for comparison. The results indicate that the optimization can significantly reduce the required wells in the original design. Dewatering in the deepest zone exhibits the highest efficiency for long-deep excavations with gradually varying depths. For the dewatering sequence from the shallowest to the deepest zone, more pumping wells are required but less energy is consumed. Higher quantity and more advantageous locations of pumping wells in the LP model usually result in lower total pumping rate, drawdown, and ground settlement. If more pumping wells are considered in the deepest zone, pumping rate limitation of single well will only slightly increase the total pumping rate, number of required pumping wells, drawdown, and ground settlement.</p></div>\",\"PeriodicalId\":48505,\"journal\":{\"name\":\"Underground Space\",\"volume\":\"17 \",\"pages\":\"Pages 246-266\"},\"PeriodicalIF\":8.2000,\"publicationDate\":\"2024-01-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2467967424000072/pdfft?md5=7fde955b8101d15c426b98c22dc3ed69&pid=1-s2.0-S2467967424000072-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Underground Space\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2467967424000072\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Underground Space","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2467967424000072","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
Optimization of confined aquifer dewatering for long-deep excavation using simulation–optimization method
The confined aquifer dewatering for long-deep excavations usually encounters challenges due to complicated geotechnical conditions, large excavation sizes, and high hydraulic pressures. To propose the most efficient scheme of confined aquifer dewatering for long-deep excavations, dewatering optimizations were performed using the simulation–optimization method. An open cut tunnel of the Jiangyin-Jingjiang Yangtze River Tunnel Project was taken as an example. The methods of finite element and linear programming (LP) were combined to optimize the dewatering process. A three-dimensional finite element model was developed. After simulating the pumping tests, hydraulic conductivity was inverted. Then, necessary parameters in the LP method were determined by simulating dewatering with each pumping well, and various LP models were developed based on some important influence factors such as dewatering sequence, considered pumping wells, and pumping rate limitation. Finally, the optimal pumping rates were solved and applied to the numerical model, with induced drawdown and ground settlement computed for comparison. The results indicate that the optimization can significantly reduce the required wells in the original design. Dewatering in the deepest zone exhibits the highest efficiency for long-deep excavations with gradually varying depths. For the dewatering sequence from the shallowest to the deepest zone, more pumping wells are required but less energy is consumed. Higher quantity and more advantageous locations of pumping wells in the LP model usually result in lower total pumping rate, drawdown, and ground settlement. If more pumping wells are considered in the deepest zone, pumping rate limitation of single well will only slightly increase the total pumping rate, number of required pumping wells, drawdown, and ground settlement.
期刊介绍:
Underground Space is an open access international journal without article processing charges (APC) committed to serving as a scientific forum for researchers and practitioners in the field of underground engineering. The journal welcomes manuscripts that deal with original theories, methods, technologies, and important applications throughout the life-cycle of underground projects, including planning, design, operation and maintenance, disaster prevention, and demolition. The journal is particularly interested in manuscripts related to the latest development of smart underground engineering from the perspectives of resilience, resources saving, environmental friendliness, humanity, and artificial intelligence. The manuscripts are expected to have significant innovation and potential impact in the field of underground engineering, and should have clear association with or application in underground projects.