Azdayanti Muslim , Shafiq Aazmi , Yi Xian Er , Shezryna Shahrizal , Yvonne Ai Lian Lim
{"title":"蛔虫的肠道微生物群谱与人类宿主截然不同:初步见解","authors":"Azdayanti Muslim , Shafiq Aazmi , Yi Xian Er , Shezryna Shahrizal , Yvonne Ai Lian Lim","doi":"10.1016/j.fawpar.2024.e00223","DOIUrl":null,"url":null,"abstract":"<div><p>In indigenous populations where soil-transmitted helminths (STH) infections are endemic, STH parasites (i.e., <em>Ascaris lumbricoides</em>, <em>Trichuris trichiura</em>, hookworms) often co-exist and co-evolve with the gut microbiota of their human hosts. The association between STH infections and the gut microbiota of the colonized human hosts has been established, but few studies explored the gut microbiota of the parasites. This preliminary study aimed to characterize the microbiota of the STH parasite for further understanding the STH parasite-host relationship. The gut microbial genomic DNA from four adult <em>A. lumbricoides</em> worms recovered from a six-year-old indigenous Negrito boy living in an STH-endemic village in Perak, Peninsular Malaysia was extracted and sequenced for the V3-V4 region of the 16S rRNA. The microbiota profiles of these worms were characterized and compared with the gut microbiota of their human host, including the profiles from four STH-positive and three STH-negative individuals from the same tribe and village. The gut microbial structure of <em>A. lumbricoides</em> was found to be differed significantly from their human host. The worms contained lower gut bacterial abundance and diversity than human. This difference was evident in the beta diversity analysis which showed a clear separation between the two sample types. While both Firmicutes (52.3%) and Bacteroidetes (36.6%) are the predominant phyla followed by Proteobacteria (7.2%) in the human gut, the microbiota of <em>Ascaris</em> gut is highly dominated by Firmicutes, constituting 84.2% relative abundance (mainly from the genus <em>Clostridium</em>), followed by Proteobacteria (11.1%), Tenericutes (1.8%) and Bacteroidetes (1.5%). The parasites were also found to alter the microbial structure of the human gut following infection based on the relatively higher bacterial abundance in STH-positive versus STH-negative participants. Further studies with a greater number of <em>Ascaris</em> adults and human hosts are needed to confirm the gut microbiota profiles.</p></div>","PeriodicalId":37941,"journal":{"name":"Food and Waterborne Parasitology","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2405676624000052/pdfft?md5=2735f290487fed1829432dd4d110a9b3&pid=1-s2.0-S2405676624000052-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Ascaris lumbricoides harbors a distinct gut microbiota profile from its human host: Preliminary insights\",\"authors\":\"Azdayanti Muslim , Shafiq Aazmi , Yi Xian Er , Shezryna Shahrizal , Yvonne Ai Lian Lim\",\"doi\":\"10.1016/j.fawpar.2024.e00223\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In indigenous populations where soil-transmitted helminths (STH) infections are endemic, STH parasites (i.e., <em>Ascaris lumbricoides</em>, <em>Trichuris trichiura</em>, hookworms) often co-exist and co-evolve with the gut microbiota of their human hosts. The association between STH infections and the gut microbiota of the colonized human hosts has been established, but few studies explored the gut microbiota of the parasites. This preliminary study aimed to characterize the microbiota of the STH parasite for further understanding the STH parasite-host relationship. The gut microbial genomic DNA from four adult <em>A. lumbricoides</em> worms recovered from a six-year-old indigenous Negrito boy living in an STH-endemic village in Perak, Peninsular Malaysia was extracted and sequenced for the V3-V4 region of the 16S rRNA. The microbiota profiles of these worms were characterized and compared with the gut microbiota of their human host, including the profiles from four STH-positive and three STH-negative individuals from the same tribe and village. The gut microbial structure of <em>A. lumbricoides</em> was found to be differed significantly from their human host. The worms contained lower gut bacterial abundance and diversity than human. This difference was evident in the beta diversity analysis which showed a clear separation between the two sample types. While both Firmicutes (52.3%) and Bacteroidetes (36.6%) are the predominant phyla followed by Proteobacteria (7.2%) in the human gut, the microbiota of <em>Ascaris</em> gut is highly dominated by Firmicutes, constituting 84.2% relative abundance (mainly from the genus <em>Clostridium</em>), followed by Proteobacteria (11.1%), Tenericutes (1.8%) and Bacteroidetes (1.5%). The parasites were also found to alter the microbial structure of the human gut following infection based on the relatively higher bacterial abundance in STH-positive versus STH-negative participants. Further studies with a greater number of <em>Ascaris</em> adults and human hosts are needed to confirm the gut microbiota profiles.</p></div>\",\"PeriodicalId\":37941,\"journal\":{\"name\":\"Food and Waterborne Parasitology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-01-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2405676624000052/pdfft?md5=2735f290487fed1829432dd4d110a9b3&pid=1-s2.0-S2405676624000052-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Food and Waterborne Parasitology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2405676624000052\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PARASITOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food and Waterborne Parasitology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2405676624000052","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PARASITOLOGY","Score":null,"Total":0}
Ascaris lumbricoides harbors a distinct gut microbiota profile from its human host: Preliminary insights
In indigenous populations where soil-transmitted helminths (STH) infections are endemic, STH parasites (i.e., Ascaris lumbricoides, Trichuris trichiura, hookworms) often co-exist and co-evolve with the gut microbiota of their human hosts. The association between STH infections and the gut microbiota of the colonized human hosts has been established, but few studies explored the gut microbiota of the parasites. This preliminary study aimed to characterize the microbiota of the STH parasite for further understanding the STH parasite-host relationship. The gut microbial genomic DNA from four adult A. lumbricoides worms recovered from a six-year-old indigenous Negrito boy living in an STH-endemic village in Perak, Peninsular Malaysia was extracted and sequenced for the V3-V4 region of the 16S rRNA. The microbiota profiles of these worms were characterized and compared with the gut microbiota of their human host, including the profiles from four STH-positive and three STH-negative individuals from the same tribe and village. The gut microbial structure of A. lumbricoides was found to be differed significantly from their human host. The worms contained lower gut bacterial abundance and diversity than human. This difference was evident in the beta diversity analysis which showed a clear separation between the two sample types. While both Firmicutes (52.3%) and Bacteroidetes (36.6%) are the predominant phyla followed by Proteobacteria (7.2%) in the human gut, the microbiota of Ascaris gut is highly dominated by Firmicutes, constituting 84.2% relative abundance (mainly from the genus Clostridium), followed by Proteobacteria (11.1%), Tenericutes (1.8%) and Bacteroidetes (1.5%). The parasites were also found to alter the microbial structure of the human gut following infection based on the relatively higher bacterial abundance in STH-positive versus STH-negative participants. Further studies with a greater number of Ascaris adults and human hosts are needed to confirm the gut microbiota profiles.
期刊介绍:
Food and Waterborne Parasitology publishes high quality papers containing original research findings, investigative reports, and scientific proceedings on parasites which are transmitted to humans via the consumption of food or water. The relevant parasites include protozoa, nematodes, cestodes and trematodes which are transmitted by food or water and capable of infecting humans. Pertinent food includes products of animal or plant origin which are domestic or wild, and consumed by humans. Animals and plants from both terrestrial and aquatic sources are included, as well as studies related to potable and other types of water which serve to harbor, perpetuate or disseminate food and waterborne parasites. Studies dealing with prevalence, transmission, epidemiology, risk assessment and mitigation, including control measures and test methodologies for parasites in food and water are of particular interest. Evidence of the emergence of such parasites and interactions among domestic animals, wildlife and humans are of interest. The impact of parasites on the health and welfare of humans is viewed as very important and within scope of the journal. Manuscripts with scientifically generated information on associations between food and waterborne parasitic diseases and lifestyle, culture and economies are also welcome. Studies involving animal experiments must meet the International Guiding Principles for Biomedical Research Involving Animals as issued by the Council for International Organizations of Medical Sciences.