冻土地区土壤冻结与桩基承载力协同变化分析

IF 4.3 Q2 TRANSPORTATION
Dezhong Yu , Yang Cao , Qianqian Zhao
{"title":"冻土地区土壤冻结与桩基承载力协同变化分析","authors":"Dezhong Yu ,&nbsp;Yang Cao ,&nbsp;Qianqian Zhao","doi":"10.1016/j.ijtst.2024.01.004","DOIUrl":null,"url":null,"abstract":"<div><div>The construction of bored piles in permafrost regions disturbs the thermal stability of frozen soil, leading to decreased early bearing capacity of the pile foundation. As the permafrost ground temperature influences the area, the pile-soil gradually undergoes refreezing, resulting in a continuous enhancement of the pile foundation's bearing capacity. To study the synergistic variation law of soil refreezing and bearing capacity of bridge pile foundation in permafrost regions, two test piles with a length of 15 m and a diameter of 1.2 m were poured based on the actual bridge engineering construction project in the permafrost region of Daxing’an mountains, China. An intelligent temperature monitoring system was set up inside and around the area of the test pile. Combined with the collected temperature data, the refreezing state of pile-soil was comprehensively judged. The self-balancing method was employed to assess the bearing capacity of pile foundation before and after refreezing, unveiling the variation patterns in friction resistance at different soil layers and pile-end resistance. On this basis, a finite element model was established to analyze the interaction between pile side friction and pile tip resistance at varying depths of frozen soil. The test and analysis results revealed that the permafrost temperature in the pile foundation area was −1.9 ℃. Following pile-soil refreezing, the ultimate bearing capacity of the pile foundation increased by 2 232 kN, and the growth rate was 42.9%. The friction resistance of each soil (rock) layer on the pile side increased, with the growth rate ranging from 15% to 75%.</div></div>","PeriodicalId":52282,"journal":{"name":"International Journal of Transportation Science and Technology","volume":"16 ","pages":"Pages 134-149"},"PeriodicalIF":4.3000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analysis on the synergistic variation of soil freezing and pile foundation bearing capacity in permafrost regions\",\"authors\":\"Dezhong Yu ,&nbsp;Yang Cao ,&nbsp;Qianqian Zhao\",\"doi\":\"10.1016/j.ijtst.2024.01.004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The construction of bored piles in permafrost regions disturbs the thermal stability of frozen soil, leading to decreased early bearing capacity of the pile foundation. As the permafrost ground temperature influences the area, the pile-soil gradually undergoes refreezing, resulting in a continuous enhancement of the pile foundation's bearing capacity. To study the synergistic variation law of soil refreezing and bearing capacity of bridge pile foundation in permafrost regions, two test piles with a length of 15 m and a diameter of 1.2 m were poured based on the actual bridge engineering construction project in the permafrost region of Daxing’an mountains, China. An intelligent temperature monitoring system was set up inside and around the area of the test pile. Combined with the collected temperature data, the refreezing state of pile-soil was comprehensively judged. The self-balancing method was employed to assess the bearing capacity of pile foundation before and after refreezing, unveiling the variation patterns in friction resistance at different soil layers and pile-end resistance. On this basis, a finite element model was established to analyze the interaction between pile side friction and pile tip resistance at varying depths of frozen soil. The test and analysis results revealed that the permafrost temperature in the pile foundation area was −1.9 ℃. Following pile-soil refreezing, the ultimate bearing capacity of the pile foundation increased by 2 232 kN, and the growth rate was 42.9%. The friction resistance of each soil (rock) layer on the pile side increased, with the growth rate ranging from 15% to 75%.</div></div>\",\"PeriodicalId\":52282,\"journal\":{\"name\":\"International Journal of Transportation Science and Technology\",\"volume\":\"16 \",\"pages\":\"Pages 134-149\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Transportation Science and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2046043024000042\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"TRANSPORTATION\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Transportation Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2046043024000042","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"TRANSPORTATION","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
Analysis on the synergistic variation of soil freezing and pile foundation bearing capacity in permafrost regions
The construction of bored piles in permafrost regions disturbs the thermal stability of frozen soil, leading to decreased early bearing capacity of the pile foundation. As the permafrost ground temperature influences the area, the pile-soil gradually undergoes refreezing, resulting in a continuous enhancement of the pile foundation's bearing capacity. To study the synergistic variation law of soil refreezing and bearing capacity of bridge pile foundation in permafrost regions, two test piles with a length of 15 m and a diameter of 1.2 m were poured based on the actual bridge engineering construction project in the permafrost region of Daxing’an mountains, China. An intelligent temperature monitoring system was set up inside and around the area of the test pile. Combined with the collected temperature data, the refreezing state of pile-soil was comprehensively judged. The self-balancing method was employed to assess the bearing capacity of pile foundation before and after refreezing, unveiling the variation patterns in friction resistance at different soil layers and pile-end resistance. On this basis, a finite element model was established to analyze the interaction between pile side friction and pile tip resistance at varying depths of frozen soil. The test and analysis results revealed that the permafrost temperature in the pile foundation area was −1.9 ℃. Following pile-soil refreezing, the ultimate bearing capacity of the pile foundation increased by 2 232 kN, and the growth rate was 42.9%. The friction resistance of each soil (rock) layer on the pile side increased, with the growth rate ranging from 15% to 75%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Transportation Science and Technology
International Journal of Transportation Science and Technology Engineering-Civil and Structural Engineering
CiteScore
7.20
自引率
0.00%
发文量
105
审稿时长
88 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信