Michelle Siemens, B. Emde, Marion Henkel, R. Methling, Steffen Franke, Diego Gonzalez, J. Hermsdorf
{"title":"利用双脉冲激光干涉仪研究水中激光诱导空腔和等离子体的形成","authors":"Michelle Siemens, B. Emde, Marion Henkel, R. Methling, Steffen Franke, Diego Gonzalez, J. Hermsdorf","doi":"10.3390/physics6010008","DOIUrl":null,"url":null,"abstract":"This paper deals with double-pulse laser-induced breakdown spectroscopy (LIBS) underwater, which is a promising analytical method for elemental analysis in the deep sea up to a water depth of 6000 m. A double-pulse laser with a wavelength of 1064 nm is used, which provides a pulse energy of up to 266 mJ for each laser pulse (in single pulse mode), a pulse width of 5–7 ns and a pulse delay in the range of 0.5 to 20 µs. In the double-pulse LIBS method, the first laser pulse creates a cavity on the material surface, and then the second laser pulse forms the plasma in this cavity. It is expected that the plasma is affected by the cavity’s size and lifetime. For this reason, the influence of focus position, pulse energy and pulse delay on the cavity and plasma formation at shallow water depth has been investigated.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":" 20","pages":""},"PeriodicalIF":16.4000,"publicationDate":"2024-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investigation of Laser-Induced Cavity and Plasma Formation in Water Using Double-Pulse LIBS\",\"authors\":\"Michelle Siemens, B. Emde, Marion Henkel, R. Methling, Steffen Franke, Diego Gonzalez, J. Hermsdorf\",\"doi\":\"10.3390/physics6010008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper deals with double-pulse laser-induced breakdown spectroscopy (LIBS) underwater, which is a promising analytical method for elemental analysis in the deep sea up to a water depth of 6000 m. A double-pulse laser with a wavelength of 1064 nm is used, which provides a pulse energy of up to 266 mJ for each laser pulse (in single pulse mode), a pulse width of 5–7 ns and a pulse delay in the range of 0.5 to 20 µs. In the double-pulse LIBS method, the first laser pulse creates a cavity on the material surface, and then the second laser pulse forms the plasma in this cavity. It is expected that the plasma is affected by the cavity’s size and lifetime. For this reason, the influence of focus position, pulse energy and pulse delay on the cavity and plasma formation at shallow water depth has been investigated.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":\" 20\",\"pages\":\"\"},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-01-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"1089\",\"ListUrlMain\":\"https://doi.org/10.3390/physics6010008\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1089","ListUrlMain":"https://doi.org/10.3390/physics6010008","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Investigation of Laser-Induced Cavity and Plasma Formation in Water Using Double-Pulse LIBS
This paper deals with double-pulse laser-induced breakdown spectroscopy (LIBS) underwater, which is a promising analytical method for elemental analysis in the deep sea up to a water depth of 6000 m. A double-pulse laser with a wavelength of 1064 nm is used, which provides a pulse energy of up to 266 mJ for each laser pulse (in single pulse mode), a pulse width of 5–7 ns and a pulse delay in the range of 0.5 to 20 µs. In the double-pulse LIBS method, the first laser pulse creates a cavity on the material surface, and then the second laser pulse forms the plasma in this cavity. It is expected that the plasma is affected by the cavity’s size and lifetime. For this reason, the influence of focus position, pulse energy and pulse delay on the cavity and plasma formation at shallow water depth has been investigated.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.