非因果关系解释中的简化假设

Martin Zach, Lukáš H. Zámečník
{"title":"非因果关系解释中的简化假设","authors":"Martin Zach, Lukáš H. Zámečník","doi":"10.46938/tv.2024.615","DOIUrl":null,"url":null,"abstract":"Scientific knowledge relies heavily on models, shaped by simplifying assumptions, with common categories being abstraction and idealization. This article aims to expose conceptual challenges inherent in conventional interpretations of these concepts, particularly in their practical application to scientific modeling. The primary hurdle emerges in applying these categories to real­world instances of scientific modeling, which we illustrate with examples of non­causal explanations. Key issues revolve around (i) the ambiguous distinction between abstraction and idealization and (ii) the application of the simplifying assumption of abstraction. Our hypothesis posits that non­causal explanations face unintelligibility due to an unclear understanding of the role of simplifying assumptions in them. To test this, we analyze selected examples, ranging from (toy­)examples to real­world instances, scrutinizing the alignment with the standard notions of abstraction and idealization. Throughout, we investigate the influence of simplifying assumptions on these explanations, assessing their adherence or deviation from conventional concepts.","PeriodicalId":349992,"journal":{"name":"Teorie vědy / Theory of Science","volume":" 20","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Zjednodušující předpoklady v nekauzálních vysvětleních\",\"authors\":\"Martin Zach, Lukáš H. Zámečník\",\"doi\":\"10.46938/tv.2024.615\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Scientific knowledge relies heavily on models, shaped by simplifying assumptions, with common categories being abstraction and idealization. This article aims to expose conceptual challenges inherent in conventional interpretations of these concepts, particularly in their practical application to scientific modeling. The primary hurdle emerges in applying these categories to real­world instances of scientific modeling, which we illustrate with examples of non­causal explanations. Key issues revolve around (i) the ambiguous distinction between abstraction and idealization and (ii) the application of the simplifying assumption of abstraction. Our hypothesis posits that non­causal explanations face unintelligibility due to an unclear understanding of the role of simplifying assumptions in them. To test this, we analyze selected examples, ranging from (toy­)examples to real­world instances, scrutinizing the alignment with the standard notions of abstraction and idealization. Throughout, we investigate the influence of simplifying assumptions on these explanations, assessing their adherence or deviation from conventional concepts.\",\"PeriodicalId\":349992,\"journal\":{\"name\":\"Teorie vědy / Theory of Science\",\"volume\":\" 20\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Teorie vědy / Theory of Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.46938/tv.2024.615\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Teorie vědy / Theory of Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46938/tv.2024.615","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

科学知识在很大程度上依赖于简化假设所形成的模型,其中常见的类别是抽象和理想化。本文旨在揭示这些概念的传统解释所固有的概念挑战,特别是在科学建模的实际应用中。将这些范畴应用到现实世界的科学建模实例中会遇到主要障碍,我们将以非因果解释为例加以说明。关键问题围绕着:(i) 抽象与理想化之间模棱两可的区别;(ii) 抽象这一简化假设的应用。我们的假设认为,非因果解释之所以难以理解,是因为人们对简化假设在其中的作用认识不清。为了验证这一点,我们分析了一些从(玩具)实例到现实世界实例的选定例子,仔细研究了它们与标准的抽象和理想化概念的一致性。自始至终,我们都在研究简化假设对这些解释的影响,评估它们与传统概念的一致性或偏差。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Zjednodušující předpoklady v nekauzálních vysvětleních
Scientific knowledge relies heavily on models, shaped by simplifying assumptions, with common categories being abstraction and idealization. This article aims to expose conceptual challenges inherent in conventional interpretations of these concepts, particularly in their practical application to scientific modeling. The primary hurdle emerges in applying these categories to real­world instances of scientific modeling, which we illustrate with examples of non­causal explanations. Key issues revolve around (i) the ambiguous distinction between abstraction and idealization and (ii) the application of the simplifying assumption of abstraction. Our hypothesis posits that non­causal explanations face unintelligibility due to an unclear understanding of the role of simplifying assumptions in them. To test this, we analyze selected examples, ranging from (toy­)examples to real­world instances, scrutinizing the alignment with the standard notions of abstraction and idealization. Throughout, we investigate the influence of simplifying assumptions on these explanations, assessing their adherence or deviation from conventional concepts.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信