{"title":"使用生成式对抗网络生成合成磁共振成像图像,用于脑肿瘤的多类自动分割","authors":"P. Raut, G. Baldini, M. Schöneck, L. Caldeira","doi":"10.3389/fradi.2023.1336902","DOIUrl":null,"url":null,"abstract":"Challenging tasks such as lesion segmentation, classification, and analysis for the assessment of disease progression can be automatically achieved using deep learning (DL)-based algorithms. DL techniques such as 3D convolutional neural networks are trained using heterogeneous volumetric imaging data such as MRI, CT, and PET, among others. However, DL-based methods are usually only applicable in the presence of the desired number of inputs. In the absence of one of the required inputs, the method cannot be used. By implementing a generative adversarial network (GAN), we aim to apply multi-label automatic segmentation of brain tumors to synthetic images when not all inputs are present. The implemented GAN is based on the Pix2Pix architecture and has been extended to a 3D framework named Pix2PixNIfTI. For this study, 1,251 patients of the BraTS2021 dataset comprising sequences such as T1w, T2w, T1CE, and FLAIR images equipped with respective multi-label segmentation were used. This dataset was used for training the Pix2PixNIfTI model for generating synthetic MRI images of all the image contrasts. The segmentation model, namely DeepMedic, was trained in a five-fold cross-validation manner for brain tumor segmentation and tested using the original inputs as the gold standard. The inference of trained segmentation models was later applied to synthetic images replacing missing input, in combination with other original images to identify the efficacy of generated images in achieving multi-class segmentation. For the multi-class segmentation using synthetic data or lesser inputs, the dice scores were observed to be significantly reduced but remained similar in range for the whole tumor when compared with evaluated original image segmentation (e.g. mean dice of synthetic T2w prediction NC, 0.74 ± 0.30; ED, 0.81 ± 0.15; CET, 0.84 ± 0.21; WT, 0.90 ± 0.08). A standard paired t-tests with multiple comparison correction were performed to assess the difference between all regions (p < 0.05). The study concludes that the use of Pix2PixNIfTI allows us to segment brain tumors when one input image is missing.","PeriodicalId":73101,"journal":{"name":"Frontiers in radiology","volume":"110 3","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Using a generative adversarial network to generate synthetic MRI images for multi-class automatic segmentation of brain tumors\",\"authors\":\"P. Raut, G. Baldini, M. Schöneck, L. Caldeira\",\"doi\":\"10.3389/fradi.2023.1336902\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Challenging tasks such as lesion segmentation, classification, and analysis for the assessment of disease progression can be automatically achieved using deep learning (DL)-based algorithms. DL techniques such as 3D convolutional neural networks are trained using heterogeneous volumetric imaging data such as MRI, CT, and PET, among others. However, DL-based methods are usually only applicable in the presence of the desired number of inputs. In the absence of one of the required inputs, the method cannot be used. By implementing a generative adversarial network (GAN), we aim to apply multi-label automatic segmentation of brain tumors to synthetic images when not all inputs are present. The implemented GAN is based on the Pix2Pix architecture and has been extended to a 3D framework named Pix2PixNIfTI. For this study, 1,251 patients of the BraTS2021 dataset comprising sequences such as T1w, T2w, T1CE, and FLAIR images equipped with respective multi-label segmentation were used. This dataset was used for training the Pix2PixNIfTI model for generating synthetic MRI images of all the image contrasts. The segmentation model, namely DeepMedic, was trained in a five-fold cross-validation manner for brain tumor segmentation and tested using the original inputs as the gold standard. The inference of trained segmentation models was later applied to synthetic images replacing missing input, in combination with other original images to identify the efficacy of generated images in achieving multi-class segmentation. For the multi-class segmentation using synthetic data or lesser inputs, the dice scores were observed to be significantly reduced but remained similar in range for the whole tumor when compared with evaluated original image segmentation (e.g. mean dice of synthetic T2w prediction NC, 0.74 ± 0.30; ED, 0.81 ± 0.15; CET, 0.84 ± 0.21; WT, 0.90 ± 0.08). A standard paired t-tests with multiple comparison correction were performed to assess the difference between all regions (p < 0.05). The study concludes that the use of Pix2PixNIfTI allows us to segment brain tumors when one input image is missing.\",\"PeriodicalId\":73101,\"journal\":{\"name\":\"Frontiers in radiology\",\"volume\":\"110 3\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in radiology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3389/fradi.2023.1336902\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in radiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/fradi.2023.1336902","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Using a generative adversarial network to generate synthetic MRI images for multi-class automatic segmentation of brain tumors
Challenging tasks such as lesion segmentation, classification, and analysis for the assessment of disease progression can be automatically achieved using deep learning (DL)-based algorithms. DL techniques such as 3D convolutional neural networks are trained using heterogeneous volumetric imaging data such as MRI, CT, and PET, among others. However, DL-based methods are usually only applicable in the presence of the desired number of inputs. In the absence of one of the required inputs, the method cannot be used. By implementing a generative adversarial network (GAN), we aim to apply multi-label automatic segmentation of brain tumors to synthetic images when not all inputs are present. The implemented GAN is based on the Pix2Pix architecture and has been extended to a 3D framework named Pix2PixNIfTI. For this study, 1,251 patients of the BraTS2021 dataset comprising sequences such as T1w, T2w, T1CE, and FLAIR images equipped with respective multi-label segmentation were used. This dataset was used for training the Pix2PixNIfTI model for generating synthetic MRI images of all the image contrasts. The segmentation model, namely DeepMedic, was trained in a five-fold cross-validation manner for brain tumor segmentation and tested using the original inputs as the gold standard. The inference of trained segmentation models was later applied to synthetic images replacing missing input, in combination with other original images to identify the efficacy of generated images in achieving multi-class segmentation. For the multi-class segmentation using synthetic data or lesser inputs, the dice scores were observed to be significantly reduced but remained similar in range for the whole tumor when compared with evaluated original image segmentation (e.g. mean dice of synthetic T2w prediction NC, 0.74 ± 0.30; ED, 0.81 ± 0.15; CET, 0.84 ± 0.21; WT, 0.90 ± 0.08). A standard paired t-tests with multiple comparison correction were performed to assess the difference between all regions (p < 0.05). The study concludes that the use of Pix2PixNIfTI allows us to segment brain tumors when one input image is missing.