{"title":"石墨颗粒系统的测量浓度","authors":"Erhan Bayraktar, Donghan Kim","doi":"10.1017/apr.2023.59","DOIUrl":null,"url":null,"abstract":"\n We study heterogeneously interacting diffusive particle systems with mean-field-type interaction characterized by an underlying graphon and their finite particle approximations. Under suitable conditions, we obtain exponential concentration estimates over a finite time horizon for both 1- and 2-Wasserstein distances between the empirical measures of the finite particle systems and the averaged law of the graphon system.","PeriodicalId":502238,"journal":{"name":"Advances in Applied Probability","volume":"85 17","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Concentration of measure for graphon particle system\",\"authors\":\"Erhan Bayraktar, Donghan Kim\",\"doi\":\"10.1017/apr.2023.59\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n We study heterogeneously interacting diffusive particle systems with mean-field-type interaction characterized by an underlying graphon and their finite particle approximations. Under suitable conditions, we obtain exponential concentration estimates over a finite time horizon for both 1- and 2-Wasserstein distances between the empirical measures of the finite particle systems and the averaged law of the graphon system.\",\"PeriodicalId\":502238,\"journal\":{\"name\":\"Advances in Applied Probability\",\"volume\":\"85 17\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Applied Probability\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1017/apr.2023.59\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Applied Probability","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/apr.2023.59","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Concentration of measure for graphon particle system
We study heterogeneously interacting diffusive particle systems with mean-field-type interaction characterized by an underlying graphon and their finite particle approximations. Under suitable conditions, we obtain exponential concentration estimates over a finite time horizon for both 1- and 2-Wasserstein distances between the empirical measures of the finite particle systems and the averaged law of the graphon system.