Haijin Wang, Zonghai Zhang, Jiguang Zhang, Yuying Shen, Jixin Wang
{"title":"旋转钻机钻杆上多重非静态载荷的新型载荷外推法","authors":"Haijin Wang, Zonghai Zhang, Jiguang Zhang, Yuying Shen, Jixin Wang","doi":"10.3390/machines12010075","DOIUrl":null,"url":null,"abstract":"The drill pipe of a rotary rig is subject to the dynamic influence of non-stationary loads, including rotation torque and applied force. In order to address the challenge of simultaneously extrapolating multiple non-stationary loads, a novel extrapolation framework is proposed. This framework utilizes rainflow counting to obtain mean and amplitude sequences of the loads. The extreme values of the amplitude sequence are fitted using the Generalized Pareto Distribution (GPD), while the median values are fitted using the Double Kernel Density Estimation (DKDE). By extrapolating the Inverse Cumulative Distribution Function (ICDF) based on the fitted distribution, a new amplitude sequence can be derived. The combination of this extrapolated amplitude sequence with the original mean sequence forms a new load spectrum. The results of applying the proposed extrapolation method to the drill pipe of a rotary rig demonstrate the ability of the method to yield conservative extrapolation results and accurately capture the variations in damage under the original working conditions.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Novel Load Extrapolation Method for Multiple Non-Stationary Loads on the Drill Pipe of a Rotary Rig\",\"authors\":\"Haijin Wang, Zonghai Zhang, Jiguang Zhang, Yuying Shen, Jixin Wang\",\"doi\":\"10.3390/machines12010075\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The drill pipe of a rotary rig is subject to the dynamic influence of non-stationary loads, including rotation torque and applied force. In order to address the challenge of simultaneously extrapolating multiple non-stationary loads, a novel extrapolation framework is proposed. This framework utilizes rainflow counting to obtain mean and amplitude sequences of the loads. The extreme values of the amplitude sequence are fitted using the Generalized Pareto Distribution (GPD), while the median values are fitted using the Double Kernel Density Estimation (DKDE). By extrapolating the Inverse Cumulative Distribution Function (ICDF) based on the fitted distribution, a new amplitude sequence can be derived. The combination of this extrapolated amplitude sequence with the original mean sequence forms a new load spectrum. The results of applying the proposed extrapolation method to the drill pipe of a rotary rig demonstrate the ability of the method to yield conservative extrapolation results and accurately capture the variations in damage under the original working conditions.\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-01-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/machines12010075\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/machines12010075","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
A Novel Load Extrapolation Method for Multiple Non-Stationary Loads on the Drill Pipe of a Rotary Rig
The drill pipe of a rotary rig is subject to the dynamic influence of non-stationary loads, including rotation torque and applied force. In order to address the challenge of simultaneously extrapolating multiple non-stationary loads, a novel extrapolation framework is proposed. This framework utilizes rainflow counting to obtain mean and amplitude sequences of the loads. The extreme values of the amplitude sequence are fitted using the Generalized Pareto Distribution (GPD), while the median values are fitted using the Double Kernel Density Estimation (DKDE). By extrapolating the Inverse Cumulative Distribution Function (ICDF) based on the fitted distribution, a new amplitude sequence can be derived. The combination of this extrapolated amplitude sequence with the original mean sequence forms a new load spectrum. The results of applying the proposed extrapolation method to the drill pipe of a rotary rig demonstrate the ability of the method to yield conservative extrapolation results and accurately capture the variations in damage under the original working conditions.