Wencheng Yang, Song Wang, Jiankun Hu, Xiaohui Tao, Yan Li
{"title":"可取消生物识别技术的特征提取和学习方法:调查","authors":"Wencheng Yang, Song Wang, Jiankun Hu, Xiaohui Tao, Yan Li","doi":"10.1049/cit2.12283","DOIUrl":null,"url":null,"abstract":"<p>Biometric recognition is a widely used technology for user authentication. In the application of this technology, biometric security and recognition accuracy are two important issues that should be considered. In terms of biometric security, cancellable biometrics is an effective technique for protecting biometric data. Regarding recognition accuracy, feature representation plays a significant role in the performance and reliability of cancellable biometric systems. How to design good feature representations for cancellable biometrics is a challenging topic that has attracted a great deal of attention from the computer vision community, especially from researchers of cancellable biometrics. Feature extraction and learning in cancellable biometrics is to find suitable feature representations with a view to achieving satisfactory recognition performance, while the privacy of biometric data is protected. This survey informs the progress, trend and challenges of feature extraction and learning for cancellable biometrics, thus shedding light on the latest developments and future research of this area.</p>","PeriodicalId":46211,"journal":{"name":"CAAI Transactions on Intelligence Technology","volume":"9 1","pages":"4-25"},"PeriodicalIF":8.4000,"publicationDate":"2024-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/cit2.12283","citationCount":"0","resultStr":"{\"title\":\"Feature extraction and learning approaches for cancellable biometrics: A survey\",\"authors\":\"Wencheng Yang, Song Wang, Jiankun Hu, Xiaohui Tao, Yan Li\",\"doi\":\"10.1049/cit2.12283\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Biometric recognition is a widely used technology for user authentication. In the application of this technology, biometric security and recognition accuracy are two important issues that should be considered. In terms of biometric security, cancellable biometrics is an effective technique for protecting biometric data. Regarding recognition accuracy, feature representation plays a significant role in the performance and reliability of cancellable biometric systems. How to design good feature representations for cancellable biometrics is a challenging topic that has attracted a great deal of attention from the computer vision community, especially from researchers of cancellable biometrics. Feature extraction and learning in cancellable biometrics is to find suitable feature representations with a view to achieving satisfactory recognition performance, while the privacy of biometric data is protected. This survey informs the progress, trend and challenges of feature extraction and learning for cancellable biometrics, thus shedding light on the latest developments and future research of this area.</p>\",\"PeriodicalId\":46211,\"journal\":{\"name\":\"CAAI Transactions on Intelligence Technology\",\"volume\":\"9 1\",\"pages\":\"4-25\"},\"PeriodicalIF\":8.4000,\"publicationDate\":\"2024-01-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1049/cit2.12283\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"CAAI Transactions on Intelligence Technology\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/cit2.12283\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"CAAI Transactions on Intelligence Technology","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/cit2.12283","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Feature extraction and learning approaches for cancellable biometrics: A survey
Biometric recognition is a widely used technology for user authentication. In the application of this technology, biometric security and recognition accuracy are two important issues that should be considered. In terms of biometric security, cancellable biometrics is an effective technique for protecting biometric data. Regarding recognition accuracy, feature representation plays a significant role in the performance and reliability of cancellable biometric systems. How to design good feature representations for cancellable biometrics is a challenging topic that has attracted a great deal of attention from the computer vision community, especially from researchers of cancellable biometrics. Feature extraction and learning in cancellable biometrics is to find suitable feature representations with a view to achieving satisfactory recognition performance, while the privacy of biometric data is protected. This survey informs the progress, trend and challenges of feature extraction and learning for cancellable biometrics, thus shedding light on the latest developments and future research of this area.
期刊介绍:
CAAI Transactions on Intelligence Technology is a leading venue for original research on the theoretical and experimental aspects of artificial intelligence technology. We are a fully open access journal co-published by the Institution of Engineering and Technology (IET) and the Chinese Association for Artificial Intelligence (CAAI) providing research which is openly accessible to read and share worldwide.