可取消生物识别技术的特征提取和学习方法:调查

IF 8.4 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Wencheng Yang, Song Wang, Jiankun Hu, Xiaohui Tao, Yan Li
{"title":"可取消生物识别技术的特征提取和学习方法:调查","authors":"Wencheng Yang,&nbsp;Song Wang,&nbsp;Jiankun Hu,&nbsp;Xiaohui Tao,&nbsp;Yan Li","doi":"10.1049/cit2.12283","DOIUrl":null,"url":null,"abstract":"<p>Biometric recognition is a widely used technology for user authentication. In the application of this technology, biometric security and recognition accuracy are two important issues that should be considered. In terms of biometric security, cancellable biometrics is an effective technique for protecting biometric data. Regarding recognition accuracy, feature representation plays a significant role in the performance and reliability of cancellable biometric systems. How to design good feature representations for cancellable biometrics is a challenging topic that has attracted a great deal of attention from the computer vision community, especially from researchers of cancellable biometrics. Feature extraction and learning in cancellable biometrics is to find suitable feature representations with a view to achieving satisfactory recognition performance, while the privacy of biometric data is protected. This survey informs the progress, trend and challenges of feature extraction and learning for cancellable biometrics, thus shedding light on the latest developments and future research of this area.</p>","PeriodicalId":46211,"journal":{"name":"CAAI Transactions on Intelligence Technology","volume":"9 1","pages":"4-25"},"PeriodicalIF":8.4000,"publicationDate":"2024-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/cit2.12283","citationCount":"0","resultStr":"{\"title\":\"Feature extraction and learning approaches for cancellable biometrics: A survey\",\"authors\":\"Wencheng Yang,&nbsp;Song Wang,&nbsp;Jiankun Hu,&nbsp;Xiaohui Tao,&nbsp;Yan Li\",\"doi\":\"10.1049/cit2.12283\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Biometric recognition is a widely used technology for user authentication. In the application of this technology, biometric security and recognition accuracy are two important issues that should be considered. In terms of biometric security, cancellable biometrics is an effective technique for protecting biometric data. Regarding recognition accuracy, feature representation plays a significant role in the performance and reliability of cancellable biometric systems. How to design good feature representations for cancellable biometrics is a challenging topic that has attracted a great deal of attention from the computer vision community, especially from researchers of cancellable biometrics. Feature extraction and learning in cancellable biometrics is to find suitable feature representations with a view to achieving satisfactory recognition performance, while the privacy of biometric data is protected. This survey informs the progress, trend and challenges of feature extraction and learning for cancellable biometrics, thus shedding light on the latest developments and future research of this area.</p>\",\"PeriodicalId\":46211,\"journal\":{\"name\":\"CAAI Transactions on Intelligence Technology\",\"volume\":\"9 1\",\"pages\":\"4-25\"},\"PeriodicalIF\":8.4000,\"publicationDate\":\"2024-01-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1049/cit2.12283\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"CAAI Transactions on Intelligence Technology\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/cit2.12283\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"CAAI Transactions on Intelligence Technology","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/cit2.12283","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

生物识别是一种广泛应用的用户身份验证技术。在这项技术的应用中,生物识别的安全性和识别准确性是需要考虑的两个重要问题。在生物识别安全性方面,可取消生物识别技术是保护生物识别数据的有效技术。在识别准确性方面,特征表示对可注销生物识别系统的性能和可靠性起着重要作用。如何为可注销生物识别技术设计良好的特征表示是一个具有挑战性的课题,吸引了计算机视觉界,尤其是可注销生物识别技术研究人员的大量关注。可注销生物识别技术中的特征提取和学习就是要找到合适的特征表示,以达到令人满意的识别性能,同时保护生物识别数据的隐私。本调查报告介绍了可取消生物识别技术中特征提取和学习的进展、趋势和挑战,从而揭示了这一领域的最新发展和未来研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Feature extraction and learning approaches for cancellable biometrics: A survey

Feature extraction and learning approaches for cancellable biometrics: A survey

Biometric recognition is a widely used technology for user authentication. In the application of this technology, biometric security and recognition accuracy are two important issues that should be considered. In terms of biometric security, cancellable biometrics is an effective technique for protecting biometric data. Regarding recognition accuracy, feature representation plays a significant role in the performance and reliability of cancellable biometric systems. How to design good feature representations for cancellable biometrics is a challenging topic that has attracted a great deal of attention from the computer vision community, especially from researchers of cancellable biometrics. Feature extraction and learning in cancellable biometrics is to find suitable feature representations with a view to achieving satisfactory recognition performance, while the privacy of biometric data is protected. This survey informs the progress, trend and challenges of feature extraction and learning for cancellable biometrics, thus shedding light on the latest developments and future research of this area.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CAAI Transactions on Intelligence Technology
CAAI Transactions on Intelligence Technology COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE-
CiteScore
11.00
自引率
3.90%
发文量
134
审稿时长
35 weeks
期刊介绍: CAAI Transactions on Intelligence Technology is a leading venue for original research on the theoretical and experimental aspects of artificial intelligence technology. We are a fully open access journal co-published by the Institution of Engineering and Technology (IET) and the Chinese Association for Artificial Intelligence (CAAI) providing research which is openly accessible to read and share worldwide.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信