用于柔性钠离子混合储能的阴离子交换聚合物水凝胶电解质的高钠离子传导性和机械完整性

IF 18.7 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
SusMat Pub Date : 2024-01-22 DOI:10.1002/sus2.182
Jung Woo Hong, Harpalsinh H Rana, J. Park, Jun Su Kim, Sang Joon Lee, Gun-Woong Jang, Tae Hoon Kang, K. Shin, S. Baek, Wooseok Yang, Kwang Ho Kim, Ju‐Hyuk Lee, Ho Seok Park
{"title":"用于柔性钠离子混合储能的阴离子交换聚合物水凝胶电解质的高钠离子传导性和机械完整性","authors":"Jung Woo Hong, Harpalsinh H Rana, J. Park, Jun Su Kim, Sang Joon Lee, Gun-Woong Jang, Tae Hoon Kang, K. Shin, S. Baek, Wooseok Yang, Kwang Ho Kim, Ju‐Hyuk Lee, Ho Seok Park","doi":"10.1002/sus2.182","DOIUrl":null,"url":null,"abstract":"The polymeric gel electrolytes are attractive owing to their higher ionic conductivities than those of dry polymer electrolytes and lowered water activity for enlarged potential window. However, the ionic conductivity and mechanical strength of the Na‐ion conducting polymeric gel electrolytes are limited by below 20 mS cm−1 and 2.2 MPa. Herein, we demonstrate Na‐ion conducting and flexible polymeric hydrogel electrolytes of the chemically coupled poly(diallyldimethylammonium chloride)‐dextrin‐N,N′‐methylene‐bis‐acrylamide film immersed in NaClO4 solution (ex‐DDA‐Dex + NaClO4) for flexible sodium‐ion hybrid capacitors (f‐NIHC). In particular, the anion exchange reaction and synergistic interaction of ex‐DDA‐Dex with the optimum ClO4− enable to greatly improve the ionic conductivity up to 27.63 mS cm−1 at 25°C and electrochemical stability window up to 2.6 V, whereas the double networking structure leads to achieve both the mechanical strength (7.48 MPa) and softness of hydrogel electrolytes. Therefore, the f‐NIHCs with the ex‐DDA‐Dex + NaClO4 achieved high specific and high‐rate capacities of 192.04 F g−1 at 500 mA g−1 and 116.06 F g−1 at 10 000 mA g−1, respectively, delivering a large energy density of 120.03 W h kg−1 at 906 W kg−1 and long cyclability of 70% over 500 cycles as well as demonstrating functional operation under mechanical stresses.","PeriodicalId":29781,"journal":{"name":"SusMat","volume":null,"pages":null},"PeriodicalIF":18.7000,"publicationDate":"2024-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"High Na‐ion conductivity and mechanical integrity of anion‐exchanged polymeric hydrogel electrolytes for flexible sodium ion hybrid energy storage\",\"authors\":\"Jung Woo Hong, Harpalsinh H Rana, J. Park, Jun Su Kim, Sang Joon Lee, Gun-Woong Jang, Tae Hoon Kang, K. Shin, S. Baek, Wooseok Yang, Kwang Ho Kim, Ju‐Hyuk Lee, Ho Seok Park\",\"doi\":\"10.1002/sus2.182\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The polymeric gel electrolytes are attractive owing to their higher ionic conductivities than those of dry polymer electrolytes and lowered water activity for enlarged potential window. However, the ionic conductivity and mechanical strength of the Na‐ion conducting polymeric gel electrolytes are limited by below 20 mS cm−1 and 2.2 MPa. Herein, we demonstrate Na‐ion conducting and flexible polymeric hydrogel electrolytes of the chemically coupled poly(diallyldimethylammonium chloride)‐dextrin‐N,N′‐methylene‐bis‐acrylamide film immersed in NaClO4 solution (ex‐DDA‐Dex + NaClO4) for flexible sodium‐ion hybrid capacitors (f‐NIHC). In particular, the anion exchange reaction and synergistic interaction of ex‐DDA‐Dex with the optimum ClO4− enable to greatly improve the ionic conductivity up to 27.63 mS cm−1 at 25°C and electrochemical stability window up to 2.6 V, whereas the double networking structure leads to achieve both the mechanical strength (7.48 MPa) and softness of hydrogel electrolytes. Therefore, the f‐NIHCs with the ex‐DDA‐Dex + NaClO4 achieved high specific and high‐rate capacities of 192.04 F g−1 at 500 mA g−1 and 116.06 F g−1 at 10 000 mA g−1, respectively, delivering a large energy density of 120.03 W h kg−1 at 906 W kg−1 and long cyclability of 70% over 500 cycles as well as demonstrating functional operation under mechanical stresses.\",\"PeriodicalId\":29781,\"journal\":{\"name\":\"SusMat\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":18.7000,\"publicationDate\":\"2024-01-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SusMat\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/sus2.182\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SusMat","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/sus2.182","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

聚合凝胶电解质的吸引力在于其离子电导率高于干聚合物电解质,而且在扩大电位窗口时水活性较低。然而,Na 离子导电聚合物凝胶电解质的离子电导率和机械强度受到限制,分别低于 20 mS cm-1 和 2.2 MPa。在此,我们展示了用于柔性钠离子混合电容器(f-NIHC)的化学耦合聚(二烯丙基二甲基氯化铵)-糊精-N,N′-亚甲基双丙烯酰胺薄膜(ex-DDA-Dex + NaClO4)的Na离子导电柔性聚合物水凝胶电解质。其中,ex-DDA-Dex 与最佳 ClO4- 的阴离子交换反应和协同作用使其在 25°C 时的离子电导率高达 27.63 mS cm-1,电化学稳定性窗口高达 2.6 V,而双网络结构则使其同时具有水凝胶电解质的机械强度(7.48 MPa)和柔软性。因此,含有 ex-DDA-Dex + NaClO4 的 f-NIHC 在 500 mA g-1 和 10 000 mA g-1 下分别实现了 192.04 F g-1 和 116.06 F g-1 的高比容量和高倍率容量,在 906 W kg-1 下实现了 120.03 W h kg-1 的高能量密度,在 500 次循环中实现了 70% 的长循环性,并在机械应力下实现了功能性运行。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
High Na‐ion conductivity and mechanical integrity of anion‐exchanged polymeric hydrogel electrolytes for flexible sodium ion hybrid energy storage
The polymeric gel electrolytes are attractive owing to their higher ionic conductivities than those of dry polymer electrolytes and lowered water activity for enlarged potential window. However, the ionic conductivity and mechanical strength of the Na‐ion conducting polymeric gel electrolytes are limited by below 20 mS cm−1 and 2.2 MPa. Herein, we demonstrate Na‐ion conducting and flexible polymeric hydrogel electrolytes of the chemically coupled poly(diallyldimethylammonium chloride)‐dextrin‐N,N′‐methylene‐bis‐acrylamide film immersed in NaClO4 solution (ex‐DDA‐Dex + NaClO4) for flexible sodium‐ion hybrid capacitors (f‐NIHC). In particular, the anion exchange reaction and synergistic interaction of ex‐DDA‐Dex with the optimum ClO4− enable to greatly improve the ionic conductivity up to 27.63 mS cm−1 at 25°C and electrochemical stability window up to 2.6 V, whereas the double networking structure leads to achieve both the mechanical strength (7.48 MPa) and softness of hydrogel electrolytes. Therefore, the f‐NIHCs with the ex‐DDA‐Dex + NaClO4 achieved high specific and high‐rate capacities of 192.04 F g−1 at 500 mA g−1 and 116.06 F g−1 at 10 000 mA g−1, respectively, delivering a large energy density of 120.03 W h kg−1 at 906 W kg−1 and long cyclability of 70% over 500 cycles as well as demonstrating functional operation under mechanical stresses.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
4.20%
发文量
0
期刊介绍: SusMat aims to publish interdisciplinary and balanced research on sustainable development in various areas including materials science, engineering, chemistry, physics, and ecology. The journal focuses on sustainable materials and their impact on energy and the environment. The topics covered include environment-friendly materials, green catalysis, clean energy, and waste treatment and management. The readership includes materials scientists, engineers, chemists, physicists, energy and environment researchers, and policy makers. The journal is indexed in CAS, Current Contents, DOAJ, Science Citation Index Expanded, and Web of Science. The journal highly values innovative multidisciplinary research with wide impact.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信