Amnah Mohammed Alsuhaibani, M. S. Refat, Abdel Majid A. Adam, Mohamed I. Kobeasy, M. Y. El-Sayed, Kareem A. Asla
{"title":"利用密度泛函理论方法对加巴喷丁的抗惊厥治疗金属复合物进行几何优化和能量参数计算以及分子对接","authors":"Amnah Mohammed Alsuhaibani, M. S. Refat, Abdel Majid A. Adam, Mohamed I. Kobeasy, M. Y. El-Sayed, Kareem A. Asla","doi":"10.4314/bcse.v38i2.18","DOIUrl":null,"url":null,"abstract":"This work aims to give computational studies of Mn(II), Co(II), Ni(II) and Cu(II) complexes of gabapentin (Gpn), formulized as [M(Gpn)(H2O)3(Cl)].nH2O complexes (where n = 2-6), using DFT method. They were previously synthesized and characterized. DFT calculations are in good agreement with practical studies. Bond lengths of metal complexes reduced or increased rather than that of ligand due to complexation. Bond angles of complexes predict the octahedral environment around the central metal ions predicting sp3d2 or d2sp3hybridization. The calculated energy parameters are negative indicating stability of metal complexes. The small energy band gap of compounds predicts the higher biological activity and high tendency of electron transfer. The comparable frequencies of theoretical and experimental IR may be attributed to different phases of measurement. The induced fit docking SP G-score of the molecular interactions of drug (Gpn) and its metal(II) complexes show that all investigated compounds have a good interaction towards sertonine receptor 5-HT2C and D2 dopamine receptor proteins. Co(II)-Gpn interacts with active site residues of sertonine receptor 5-HT2C with an excellent dock score of -7.370 kcal/mol and RMSD = 1.581 Å. On the other hand, Ni(II)-Gpn has the best dock score of -6.638 kcal/mol and RMSD = 1.995 Å with D2 dopamine receptor. \nKEY WORDS: Gabapentin, Transition metals, DFT-method, molecular docking \nBull. Chem. Soc. Ethiop. 2024, 38(2), 511-526. \nDOI: https://dx.doi.org/10.4314/bcse.v38i2.18","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Geometry optimization and energy parameter calculations using density-functional theory method and molecular docking of anticonvulsant therapeutic metal complexes of gabapentin\",\"authors\":\"Amnah Mohammed Alsuhaibani, M. S. Refat, Abdel Majid A. Adam, Mohamed I. Kobeasy, M. Y. El-Sayed, Kareem A. Asla\",\"doi\":\"10.4314/bcse.v38i2.18\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work aims to give computational studies of Mn(II), Co(II), Ni(II) and Cu(II) complexes of gabapentin (Gpn), formulized as [M(Gpn)(H2O)3(Cl)].nH2O complexes (where n = 2-6), using DFT method. They were previously synthesized and characterized. DFT calculations are in good agreement with practical studies. Bond lengths of metal complexes reduced or increased rather than that of ligand due to complexation. Bond angles of complexes predict the octahedral environment around the central metal ions predicting sp3d2 or d2sp3hybridization. The calculated energy parameters are negative indicating stability of metal complexes. The small energy band gap of compounds predicts the higher biological activity and high tendency of electron transfer. The comparable frequencies of theoretical and experimental IR may be attributed to different phases of measurement. The induced fit docking SP G-score of the molecular interactions of drug (Gpn) and its metal(II) complexes show that all investigated compounds have a good interaction towards sertonine receptor 5-HT2C and D2 dopamine receptor proteins. Co(II)-Gpn interacts with active site residues of sertonine receptor 5-HT2C with an excellent dock score of -7.370 kcal/mol and RMSD = 1.581 Å. On the other hand, Ni(II)-Gpn has the best dock score of -6.638 kcal/mol and RMSD = 1.995 Å with D2 dopamine receptor. \\nKEY WORDS: Gabapentin, Transition metals, DFT-method, molecular docking \\nBull. Chem. Soc. Ethiop. 2024, 38(2), 511-526. \\nDOI: https://dx.doi.org/10.4314/bcse.v38i2.18\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-01-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.4314/bcse.v38i2.18\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.4314/bcse.v38i2.18","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Geometry optimization and energy parameter calculations using density-functional theory method and molecular docking of anticonvulsant therapeutic metal complexes of gabapentin
This work aims to give computational studies of Mn(II), Co(II), Ni(II) and Cu(II) complexes of gabapentin (Gpn), formulized as [M(Gpn)(H2O)3(Cl)].nH2O complexes (where n = 2-6), using DFT method. They were previously synthesized and characterized. DFT calculations are in good agreement with practical studies. Bond lengths of metal complexes reduced or increased rather than that of ligand due to complexation. Bond angles of complexes predict the octahedral environment around the central metal ions predicting sp3d2 or d2sp3hybridization. The calculated energy parameters are negative indicating stability of metal complexes. The small energy band gap of compounds predicts the higher biological activity and high tendency of electron transfer. The comparable frequencies of theoretical and experimental IR may be attributed to different phases of measurement. The induced fit docking SP G-score of the molecular interactions of drug (Gpn) and its metal(II) complexes show that all investigated compounds have a good interaction towards sertonine receptor 5-HT2C and D2 dopamine receptor proteins. Co(II)-Gpn interacts with active site residues of sertonine receptor 5-HT2C with an excellent dock score of -7.370 kcal/mol and RMSD = 1.581 Å. On the other hand, Ni(II)-Gpn has the best dock score of -6.638 kcal/mol and RMSD = 1.995 Å with D2 dopamine receptor.
KEY WORDS: Gabapentin, Transition metals, DFT-method, molecular docking
Bull. Chem. Soc. Ethiop. 2024, 38(2), 511-526.
DOI: https://dx.doi.org/10.4314/bcse.v38i2.18
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.