预测心房颤动主要不良心血管事件的机器学习方法

Pedro Moltó-Balado, Sílvia Reverté-Villarroya, Victor Alonso-Barberán, Cinta Monclús-Arasa, M. T. Balado-Albiol, Josep Clua-Queralt, J. Clua-Espuny
{"title":"预测心房颤动主要不良心血管事件的机器学习方法","authors":"Pedro Moltó-Balado, Sílvia Reverté-Villarroya, Victor Alonso-Barberán, Cinta Monclús-Arasa, M. T. Balado-Albiol, Josep Clua-Queralt, J. Clua-Espuny","doi":"10.3390/technologies12020013","DOIUrl":null,"url":null,"abstract":"The increasing prevalence of atrial fibrillation (AF) and its association with Major Adverse Cardiovascular Events (MACE) presents challenges in early identification and treatment. Although existing risk factors, biomarkers, genetic variants, and imaging parameters predict MACE, emerging factors may be more decisive. Artificial intelligence and machine learning techniques (ML) offer a promising avenue for more effective AF evolution prediction. Five ML models were developed to obtain predictors of MACE in AF patients. Two-thirds of the data were used for training, employing diverse approaches and optimizing to minimize prediction errors, while the remaining third was reserved for testing and validation. AdaBoost emerged as the top-performing model (accuracy: 0.9999; recall: 1; F1 score: 0.9997). Noteworthy features influencing predictions included the Charlson Comorbidity Index (CCI), diabetes mellitus, cancer, the Wells scale, and CHA2DS2-VASc, with specific associations identified. Elevated MACE risk was observed, with a CCI score exceeding 2.67 ± 1.31 (p < 0.001), CHA2DS2-VASc score of 4.62 ± 1.02 (p < 0.001), and an intermediate-risk Wells scale classification. Overall, the AdaBoost ML offers an alternative predictive approach to facilitate the early identification of MACE risk in the assessment of patients with AF.","PeriodicalId":504839,"journal":{"name":"Technologies","volume":"141 21","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Machine Learning Approaches to Predict Major Adverse Cardiovascular Events in Atrial Fibrillation\",\"authors\":\"Pedro Moltó-Balado, Sílvia Reverté-Villarroya, Victor Alonso-Barberán, Cinta Monclús-Arasa, M. T. Balado-Albiol, Josep Clua-Queralt, J. Clua-Espuny\",\"doi\":\"10.3390/technologies12020013\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The increasing prevalence of atrial fibrillation (AF) and its association with Major Adverse Cardiovascular Events (MACE) presents challenges in early identification and treatment. Although existing risk factors, biomarkers, genetic variants, and imaging parameters predict MACE, emerging factors may be more decisive. Artificial intelligence and machine learning techniques (ML) offer a promising avenue for more effective AF evolution prediction. Five ML models were developed to obtain predictors of MACE in AF patients. Two-thirds of the data were used for training, employing diverse approaches and optimizing to minimize prediction errors, while the remaining third was reserved for testing and validation. AdaBoost emerged as the top-performing model (accuracy: 0.9999; recall: 1; F1 score: 0.9997). Noteworthy features influencing predictions included the Charlson Comorbidity Index (CCI), diabetes mellitus, cancer, the Wells scale, and CHA2DS2-VASc, with specific associations identified. Elevated MACE risk was observed, with a CCI score exceeding 2.67 ± 1.31 (p < 0.001), CHA2DS2-VASc score of 4.62 ± 1.02 (p < 0.001), and an intermediate-risk Wells scale classification. Overall, the AdaBoost ML offers an alternative predictive approach to facilitate the early identification of MACE risk in the assessment of patients with AF.\",\"PeriodicalId\":504839,\"journal\":{\"name\":\"Technologies\",\"volume\":\"141 21\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Technologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/technologies12020013\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/technologies12020013","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

心房颤动(房颤)发病率的不断上升及其与重大不良心血管事件(MACE)的关联给早期识别和治疗带来了挑战。尽管现有的风险因素、生物标志物、基因变异和成像参数可以预测 MACE,但新出现的因素可能更具决定性。人工智能和机器学习技术(ML)为更有效地预测房颤演变提供了一条很有前景的途径。为了获得房颤患者 MACE 的预测因素,我们开发了五个 ML 模型。三分之二的数据用于训练,采用不同的方法并进行优化,以最大限度地减少预测误差,其余三分之一用于测试和验证。AdaBoost成为表现最好的模型(准确率:0.9999;召回率:1;F1得分:0.9997)。影响预测的值得注意的特征包括夏尔森合并症指数(CCI)、糖尿病、癌症、韦尔斯量表和 CHA2DS2-VASc,并确定了特定的关联。观察到 MACE 风险升高,CCI 评分超过 2.67 ± 1.31(p < 0.001),CHA2DS2-VASc 评分为 4.62 ± 1.02(p < 0.001),威尔斯量表分级为中危。总之,AdaBoost ML 提供了另一种预测方法,有助于在评估房颤患者时早期识别 MACE 风险。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Machine Learning Approaches to Predict Major Adverse Cardiovascular Events in Atrial Fibrillation
The increasing prevalence of atrial fibrillation (AF) and its association with Major Adverse Cardiovascular Events (MACE) presents challenges in early identification and treatment. Although existing risk factors, biomarkers, genetic variants, and imaging parameters predict MACE, emerging factors may be more decisive. Artificial intelligence and machine learning techniques (ML) offer a promising avenue for more effective AF evolution prediction. Five ML models were developed to obtain predictors of MACE in AF patients. Two-thirds of the data were used for training, employing diverse approaches and optimizing to minimize prediction errors, while the remaining third was reserved for testing and validation. AdaBoost emerged as the top-performing model (accuracy: 0.9999; recall: 1; F1 score: 0.9997). Noteworthy features influencing predictions included the Charlson Comorbidity Index (CCI), diabetes mellitus, cancer, the Wells scale, and CHA2DS2-VASc, with specific associations identified. Elevated MACE risk was observed, with a CCI score exceeding 2.67 ± 1.31 (p < 0.001), CHA2DS2-VASc score of 4.62 ± 1.02 (p < 0.001), and an intermediate-risk Wells scale classification. Overall, the AdaBoost ML offers an alternative predictive approach to facilitate the early identification of MACE risk in the assessment of patients with AF.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信