Tijana Mutić, D. Stanković, D. Manojlović, Djordje Petrić, Ferenc Pastor, V. Avdin, M. Ognjanović, V. Stanković
{"title":"将高结晶 Co3O4 加入碳浆电极结构的微摩尔左氧氟沙星传感器","authors":"Tijana Mutić, D. Stanković, D. Manojlović, Djordje Petrić, Ferenc Pastor, V. Avdin, M. Ognjanović, V. Stanković","doi":"10.3390/electrochem5010003","DOIUrl":null,"url":null,"abstract":"In this work, we successfully prepared a modified cobalt oxide (Co3O4) carbon paste electrode to detect Levofloxacin (LEV). By synthesizing Co3O4 nanoparticles through the chemical coprecipitation method, the electrochemical properties of the electrode and LEV were thoroughly investigated using CV, SWV, and EIS, while material properties were scrutinized using ICP-OES, TEM, SEM, and XRD. The results showed that the prepared electrode displayed a better electrocatalytic response than the bare carbon paste electrode. After optimizing SWV, the electrode exhibited a wide linear working range from 1 to 85 μM at pH 5 of BRBS as the supporting electrolyte. The selectivity of the proposed method was satisfactory, with good repeatability and reproducibility, strongly suggesting a potential application for determining LEV in real samples, particularly in pharmaceutical formulations. The practicality of the approach was demonstrated through good recoveries, and the morphology of the materials was found to be closely related to other parameters, indicating that the developed method can provide a cost-effective, rapid, selective, and sensitive means for LEV monitoring. Overall, this project has made significant progress towards developing a reliable method for detecting LEV and has opened up new opportunities for future research in this field.","PeriodicalId":11612,"journal":{"name":"Electrochem","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Micromolar Levofloxacin Sensor by Incorporating Highly Crystalline Co3O4 into a Carbon Paste Electrode Structure\",\"authors\":\"Tijana Mutić, D. Stanković, D. Manojlović, Djordje Petrić, Ferenc Pastor, V. Avdin, M. Ognjanović, V. Stanković\",\"doi\":\"10.3390/electrochem5010003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, we successfully prepared a modified cobalt oxide (Co3O4) carbon paste electrode to detect Levofloxacin (LEV). By synthesizing Co3O4 nanoparticles through the chemical coprecipitation method, the electrochemical properties of the electrode and LEV were thoroughly investigated using CV, SWV, and EIS, while material properties were scrutinized using ICP-OES, TEM, SEM, and XRD. The results showed that the prepared electrode displayed a better electrocatalytic response than the bare carbon paste electrode. After optimizing SWV, the electrode exhibited a wide linear working range from 1 to 85 μM at pH 5 of BRBS as the supporting electrolyte. The selectivity of the proposed method was satisfactory, with good repeatability and reproducibility, strongly suggesting a potential application for determining LEV in real samples, particularly in pharmaceutical formulations. The practicality of the approach was demonstrated through good recoveries, and the morphology of the materials was found to be closely related to other parameters, indicating that the developed method can provide a cost-effective, rapid, selective, and sensitive means for LEV monitoring. Overall, this project has made significant progress towards developing a reliable method for detecting LEV and has opened up new opportunities for future research in this field.\",\"PeriodicalId\":11612,\"journal\":{\"name\":\"Electrochem\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electrochem\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/electrochem5010003\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electrochem","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/electrochem5010003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
在这项研究中,我们成功制备了一种检测左氧氟沙星(LEV)的改性氧化钴(Co3O4)碳浆电极。通过化学共沉淀法合成了 Co3O4 纳米粒子,使用 CV、SWV 和 EIS 对电极和 LEV 的电化学性质进行了深入研究,并使用 ICP-OES、TEM、SEM 和 XRD 对材料性质进行了仔细研究。结果表明,制备的电极比裸碳浆电极显示出更好的电催化反应。对 SWV 进行优化后,在以 BRBS 为支撑电解质的 pH 值为 5 时,电极显示出 1 至 85 μM 的宽线性工作范围。该方法的选择性令人满意,具有良好的重复性和再现性,有力地证明了其在实际样品,尤其是药物制剂中测定 LEV 的潜在应用价值。良好的回收率证明了该方法的实用性,同时发现材料的形态与其他参数密切相关,这表明所开发的方法可以为 LEV 监测提供一种经济、快速、选择性强且灵敏的手段。总之,该项目在开发可靠的 LEV 检测方法方面取得了重大进展,并为该领域的未来研究开辟了新的机遇。
Micromolar Levofloxacin Sensor by Incorporating Highly Crystalline Co3O4 into a Carbon Paste Electrode Structure
In this work, we successfully prepared a modified cobalt oxide (Co3O4) carbon paste electrode to detect Levofloxacin (LEV). By synthesizing Co3O4 nanoparticles through the chemical coprecipitation method, the electrochemical properties of the electrode and LEV were thoroughly investigated using CV, SWV, and EIS, while material properties were scrutinized using ICP-OES, TEM, SEM, and XRD. The results showed that the prepared electrode displayed a better electrocatalytic response than the bare carbon paste electrode. After optimizing SWV, the electrode exhibited a wide linear working range from 1 to 85 μM at pH 5 of BRBS as the supporting electrolyte. The selectivity of the proposed method was satisfactory, with good repeatability and reproducibility, strongly suggesting a potential application for determining LEV in real samples, particularly in pharmaceutical formulations. The practicality of the approach was demonstrated through good recoveries, and the morphology of the materials was found to be closely related to other parameters, indicating that the developed method can provide a cost-effective, rapid, selective, and sensitive means for LEV monitoring. Overall, this project has made significant progress towards developing a reliable method for detecting LEV and has opened up new opportunities for future research in this field.