Florian Webner, Andrei Shishkin, Daniel Schmeling, Claus Wagner
{"title":"用于 CFD 预测的直接感染风险模型及其在 SARS-CoV-2 飞机机舱传播中的应用","authors":"Florian Webner, Andrei Shishkin, Daniel Schmeling, Claus Wagner","doi":"10.1155/2024/9927275","DOIUrl":null,"url":null,"abstract":"<p>Current models to determine the risk of airborne disease infection are typically based on a backward quantification of observed infections, leading to uncertainties, e.g., due to the lack of knowledge whether the index person was a superspreader. In contrast, the present work presents a forward infection risk model that calculates the inhaled dose of infectious virus based on the virus emission rate of an emitter and a prediction of Lagrangian particle trajectories using CFD, taking both the residence time of individual particles and the biodegradation rate into account. The estimation of the dose-response is then based on data from human challenge studies. Considering the available data for SARS-CoV-2 from the literature, it is shown that the model can be used to estimate the risk of infection with SARS-CoV-2 in the cabin of a Do728 single-aisle aircraft. However, the virus emission rate during normal breathing varies between different studies and also by about two orders of magnitude within one and the same study. A sensitivity analysis shows that the uncertainty in the input parameters leads to uncertainty in the prediction of the infection risk, which is between 0 and 12 infections among 70 passengers. This highlights the importance and challenges in terms of superspreaders for risk prediction, which are difficult to capture using standard backward calculations. Further, biological inactivation was found to have no significant impact on the risk of infection for SARS-CoV-2 in the considered aircraft cabin.</p>","PeriodicalId":13529,"journal":{"name":"Indoor air","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Direct Infection Risk Model for CFD Predictions and Its Application to SARS-CoV-2 Aircraft Cabin Transmission\",\"authors\":\"Florian Webner, Andrei Shishkin, Daniel Schmeling, Claus Wagner\",\"doi\":\"10.1155/2024/9927275\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Current models to determine the risk of airborne disease infection are typically based on a backward quantification of observed infections, leading to uncertainties, e.g., due to the lack of knowledge whether the index person was a superspreader. In contrast, the present work presents a forward infection risk model that calculates the inhaled dose of infectious virus based on the virus emission rate of an emitter and a prediction of Lagrangian particle trajectories using CFD, taking both the residence time of individual particles and the biodegradation rate into account. The estimation of the dose-response is then based on data from human challenge studies. Considering the available data for SARS-CoV-2 from the literature, it is shown that the model can be used to estimate the risk of infection with SARS-CoV-2 in the cabin of a Do728 single-aisle aircraft. However, the virus emission rate during normal breathing varies between different studies and also by about two orders of magnitude within one and the same study. A sensitivity analysis shows that the uncertainty in the input parameters leads to uncertainty in the prediction of the infection risk, which is between 0 and 12 infections among 70 passengers. This highlights the importance and challenges in terms of superspreaders for risk prediction, which are difficult to capture using standard backward calculations. Further, biological inactivation was found to have no significant impact on the risk of infection for SARS-CoV-2 in the considered aircraft cabin.</p>\",\"PeriodicalId\":13529,\"journal\":{\"name\":\"Indoor air\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-01-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Indoor air\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1155/2024/9927275\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CONSTRUCTION & BUILDING TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indoor air","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/2024/9927275","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
A Direct Infection Risk Model for CFD Predictions and Its Application to SARS-CoV-2 Aircraft Cabin Transmission
Current models to determine the risk of airborne disease infection are typically based on a backward quantification of observed infections, leading to uncertainties, e.g., due to the lack of knowledge whether the index person was a superspreader. In contrast, the present work presents a forward infection risk model that calculates the inhaled dose of infectious virus based on the virus emission rate of an emitter and a prediction of Lagrangian particle trajectories using CFD, taking both the residence time of individual particles and the biodegradation rate into account. The estimation of the dose-response is then based on data from human challenge studies. Considering the available data for SARS-CoV-2 from the literature, it is shown that the model can be used to estimate the risk of infection with SARS-CoV-2 in the cabin of a Do728 single-aisle aircraft. However, the virus emission rate during normal breathing varies between different studies and also by about two orders of magnitude within one and the same study. A sensitivity analysis shows that the uncertainty in the input parameters leads to uncertainty in the prediction of the infection risk, which is between 0 and 12 infections among 70 passengers. This highlights the importance and challenges in terms of superspreaders for risk prediction, which are difficult to capture using standard backward calculations. Further, biological inactivation was found to have no significant impact on the risk of infection for SARS-CoV-2 in the considered aircraft cabin.
期刊介绍:
The quality of the environment within buildings is a topic of major importance for public health.
Indoor Air provides a location for reporting original research results in the broad area defined by the indoor environment of non-industrial buildings. An international journal with multidisciplinary content, Indoor Air publishes papers reflecting the broad categories of interest in this field: health effects; thermal comfort; monitoring and modelling; source characterization; ventilation and other environmental control techniques.
The research results present the basic information to allow designers, building owners, and operators to provide a healthy and comfortable environment for building occupants, as well as giving medical practitioners information on how to deal with illnesses related to the indoor environment.