{"title":"优化增强现实投影仪的光输出,在艺术保护、色彩质量和能耗之间取得平衡","authors":"RS Kore, N. Brown, D. Durmus","doi":"10.1177/14771535231225360","DOIUrl":null,"url":null,"abstract":"Light absorbed by sensitive artwork may cause irreversible damage. Optimising the spectral power distribution of light sources to minimise absorbed light can reduce damage while maintaining the colour appearance of the artwork. Previous absorption-minimisation studies used optimisation methods without comparing their performance. Here, three-channel LED-augmented reality projector spectra were optimised for 24 colour samples using a brute-force (BF) and multi-objective genetic algorithm (MOGA). The BF search and MOGA performed similarly in achieving optimal results, reducing both light absorption and energy consumption by almost half. However, MOGA was 2.5 times faster than BF in finding optimal solutions. The results indicate that an LED RGB projector can be used to illuminate museum artefacts to reduce light absorption and energy consumption, with the caveat of perceptible colour shifts in some of the colour samples. Future research will investigate observers’ subjective evaluations of artwork under optimised lighting.","PeriodicalId":269493,"journal":{"name":"Lighting Research & Technology","volume":"59 11","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimising augmented reality projector light output to balance art conservation, colour quality and energy consumption\",\"authors\":\"RS Kore, N. Brown, D. Durmus\",\"doi\":\"10.1177/14771535231225360\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Light absorbed by sensitive artwork may cause irreversible damage. Optimising the spectral power distribution of light sources to minimise absorbed light can reduce damage while maintaining the colour appearance of the artwork. Previous absorption-minimisation studies used optimisation methods without comparing their performance. Here, three-channel LED-augmented reality projector spectra were optimised for 24 colour samples using a brute-force (BF) and multi-objective genetic algorithm (MOGA). The BF search and MOGA performed similarly in achieving optimal results, reducing both light absorption and energy consumption by almost half. However, MOGA was 2.5 times faster than BF in finding optimal solutions. The results indicate that an LED RGB projector can be used to illuminate museum artefacts to reduce light absorption and energy consumption, with the caveat of perceptible colour shifts in some of the colour samples. Future research will investigate observers’ subjective evaluations of artwork under optimised lighting.\",\"PeriodicalId\":269493,\"journal\":{\"name\":\"Lighting Research & Technology\",\"volume\":\"59 11\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Lighting Research & Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1177/14771535231225360\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Lighting Research & Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/14771535231225360","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Optimising augmented reality projector light output to balance art conservation, colour quality and energy consumption
Light absorbed by sensitive artwork may cause irreversible damage. Optimising the spectral power distribution of light sources to minimise absorbed light can reduce damage while maintaining the colour appearance of the artwork. Previous absorption-minimisation studies used optimisation methods without comparing their performance. Here, three-channel LED-augmented reality projector spectra were optimised for 24 colour samples using a brute-force (BF) and multi-objective genetic algorithm (MOGA). The BF search and MOGA performed similarly in achieving optimal results, reducing both light absorption and energy consumption by almost half. However, MOGA was 2.5 times faster than BF in finding optimal solutions. The results indicate that an LED RGB projector can be used to illuminate museum artefacts to reduce light absorption and energy consumption, with the caveat of perceptible colour shifts in some of the colour samples. Future research will investigate observers’ subjective evaluations of artwork under optimised lighting.