{"title":"正辛烷在金属氧化物催化剂上的气相氧化脱氢反应:综述","authors":"Pinkie Ntola, Mzamo L. Shozi","doi":"10.3390/catal14020100","DOIUrl":null,"url":null,"abstract":"The oxidative dehydrogenation (ODH) of alkanes, whereby hydrogen is removed to form unsaturated compounds, is an important process, particularly in the petrochemical industry. The ODH of lighter alkanes (C3–C6) is well-reported in the literature, and while there are several reports on the ODH of n-octane (C8), there is no reported review of the important findings in the literature. This review discusses the gas-phase ODH of n-octane occurring at high temperatures (300–550 °C). The mechanisms via which the n-octane ODH of occurs are also briefly discussed. The oxidants (mainly O2 and CO2) and catalysts (supported and unsupported metal oxides) are discussed as well as the effect of these and the temperature on the type of products formed and their various distributions. Furthermore, the review looks at the acid–base and redox properties of the catalysts and how they affect product formation. Some challenges as well as perspectives of the ODH process are also highlighted.","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":"37 1","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2024-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Gas-Phase Oxidative Dehydrogenation of n-Octane over Metal Oxide Catalysts: A Review\",\"authors\":\"Pinkie Ntola, Mzamo L. Shozi\",\"doi\":\"10.3390/catal14020100\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The oxidative dehydrogenation (ODH) of alkanes, whereby hydrogen is removed to form unsaturated compounds, is an important process, particularly in the petrochemical industry. The ODH of lighter alkanes (C3–C6) is well-reported in the literature, and while there are several reports on the ODH of n-octane (C8), there is no reported review of the important findings in the literature. This review discusses the gas-phase ODH of n-octane occurring at high temperatures (300–550 °C). The mechanisms via which the n-octane ODH of occurs are also briefly discussed. The oxidants (mainly O2 and CO2) and catalysts (supported and unsupported metal oxides) are discussed as well as the effect of these and the temperature on the type of products formed and their various distributions. Furthermore, the review looks at the acid–base and redox properties of the catalysts and how they affect product formation. Some challenges as well as perspectives of the ODH process are also highlighted.\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":\"37 1\",\"pages\":\"\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-01-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.3390/catal14020100\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.3390/catal14020100","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Gas-Phase Oxidative Dehydrogenation of n-Octane over Metal Oxide Catalysts: A Review
The oxidative dehydrogenation (ODH) of alkanes, whereby hydrogen is removed to form unsaturated compounds, is an important process, particularly in the petrochemical industry. The ODH of lighter alkanes (C3–C6) is well-reported in the literature, and while there are several reports on the ODH of n-octane (C8), there is no reported review of the important findings in the literature. This review discusses the gas-phase ODH of n-octane occurring at high temperatures (300–550 °C). The mechanisms via which the n-octane ODH of occurs are also briefly discussed. The oxidants (mainly O2 and CO2) and catalysts (supported and unsupported metal oxides) are discussed as well as the effect of these and the temperature on the type of products formed and their various distributions. Furthermore, the review looks at the acid–base and redox properties of the catalysts and how they affect product formation. Some challenges as well as perspectives of the ODH process are also highlighted.
期刊介绍:
ACS Applied Electronic Materials is an interdisciplinary journal publishing original research covering all aspects of electronic materials. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials science, engineering, optics, physics, and chemistry into important applications of electronic materials. Sample research topics that span the journal's scope are inorganic, organic, ionic and polymeric materials with properties that include conducting, semiconducting, superconducting, insulating, dielectric, magnetic, optoelectronic, piezoelectric, ferroelectric and thermoelectric.
Indexed/Abstracted:
Web of Science SCIE
Scopus
CAS
INSPEC
Portico