在蜡染图案分类中实施卷积神经网络 (CNN) 方法。

Disty Anastasya, Syahrul Fahri, Stefania Situmorang
{"title":"在蜡染图案分类中实施卷积神经网络 (CNN) 方法。","authors":"Disty Anastasya, Syahrul Fahri, Stefania Situmorang","doi":"10.25134/ilkom.v18i1.21","DOIUrl":null,"url":null,"abstract":"Indonesia is renowned for its diverse ethnicities, each contributing to a culturally rich mosaic. Among the distinctive regional traits, batik stands out prominently, evolving uniquely in each part of the country. However, the diversity in batik designs often confuses people trying to identify the region of origin due to similarities in patterns. Deciphering these unique batik motifs typically requires specialized knowledge, particularly from individuals well-versed in the art of batik. Reviews suggest that employing pattern recognition methods is an effective way to tackle this challenge. In today's technological landscape, various methods have emerged to aid in recognizing fabric motifs. This study utilizes the Convolutional Neural Network (CNN) method with the Efficient Net-B0 architecture. The tests conducted to identify batik motifs using this approach yielded a highest accuracy result of 79.62% for the test data and an accuracy validation result of 73.33%. These findings underscore the potential of advanced technologies, specifically the CNN with Efficient Net-B0 architecture, in accurately discerning and distinguishing batik motifs.","PeriodicalId":214195,"journal":{"name":"NUANSA INFORMATIKA","volume":"20 10","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Implementasi Metode Convolutional Neural Network (CNN) Dalam Klasifikasi Motif Batik.\",\"authors\":\"Disty Anastasya, Syahrul Fahri, Stefania Situmorang\",\"doi\":\"10.25134/ilkom.v18i1.21\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Indonesia is renowned for its diverse ethnicities, each contributing to a culturally rich mosaic. Among the distinctive regional traits, batik stands out prominently, evolving uniquely in each part of the country. However, the diversity in batik designs often confuses people trying to identify the region of origin due to similarities in patterns. Deciphering these unique batik motifs typically requires specialized knowledge, particularly from individuals well-versed in the art of batik. Reviews suggest that employing pattern recognition methods is an effective way to tackle this challenge. In today's technological landscape, various methods have emerged to aid in recognizing fabric motifs. This study utilizes the Convolutional Neural Network (CNN) method with the Efficient Net-B0 architecture. The tests conducted to identify batik motifs using this approach yielded a highest accuracy result of 79.62% for the test data and an accuracy validation result of 73.33%. These findings underscore the potential of advanced technologies, specifically the CNN with Efficient Net-B0 architecture, in accurately discerning and distinguishing batik motifs.\",\"PeriodicalId\":214195,\"journal\":{\"name\":\"NUANSA INFORMATIKA\",\"volume\":\"20 10\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"NUANSA INFORMATIKA\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.25134/ilkom.v18i1.21\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"NUANSA INFORMATIKA","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.25134/ilkom.v18i1.21","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

印度尼西亚以其多元化的民族而闻名,每个民族都为丰富多彩的马赛克文化做出了贡献。在各具特色的地区特征中,蜡染尤为突出,在印尼各地都有独特的发展。然而,蜡染设计的多样性往往会让人们因图案相似而无法辨别原产地。破解这些独特的蜡染图案通常需要专业知识,尤其是精通蜡染艺术的人。评论认为,采用图案识别方法是应对这一挑战的有效方法。在当今的技术环境中,出现了各种有助于识别织物图案的方法。本研究采用了具有 Efficient Net-B0 架构的卷积神经网络 (CNN) 方法。使用该方法识别蜡染图案的测试结果显示,测试数据的最高准确率为 79.62%,验证结果为 73.33%。这些发现凸显了先进技术,特别是采用 Efficient Net-B0 架构的 CNN 在准确辨别和区分蜡染图案方面的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Implementasi Metode Convolutional Neural Network (CNN) Dalam Klasifikasi Motif Batik.
Indonesia is renowned for its diverse ethnicities, each contributing to a culturally rich mosaic. Among the distinctive regional traits, batik stands out prominently, evolving uniquely in each part of the country. However, the diversity in batik designs often confuses people trying to identify the region of origin due to similarities in patterns. Deciphering these unique batik motifs typically requires specialized knowledge, particularly from individuals well-versed in the art of batik. Reviews suggest that employing pattern recognition methods is an effective way to tackle this challenge. In today's technological landscape, various methods have emerged to aid in recognizing fabric motifs. This study utilizes the Convolutional Neural Network (CNN) method with the Efficient Net-B0 architecture. The tests conducted to identify batik motifs using this approach yielded a highest accuracy result of 79.62% for the test data and an accuracy validation result of 73.33%. These findings underscore the potential of advanced technologies, specifically the CNN with Efficient Net-B0 architecture, in accurately discerning and distinguishing batik motifs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信