环氧树脂/印度杏仁/柚木混合复合材料的机械和磨损行为实验研究

IF 1.1 4区 工程技术 Q4 ENGINEERING, CHEMICAL
X. R. Xavier, K. Suderson, K. Viswanath, D. Velmurugan
{"title":"环氧树脂/印度杏仁/柚木混合复合材料的机械和磨损行为实验研究","authors":"X. R. Xavier, K. Suderson, K. Viswanath, D. Velmurugan","doi":"10.1515/ipp-2023-4440","DOIUrl":null,"url":null,"abstract":"\n Natural fiber-based hybrid composites are gaining more attention in industrial usage due to their low cost, environmental friendliness, and simplicity of processing. In this research, an effort was made to create hybrid natural composites using Indian almond and peepal fibers for applications in the automotive industry. Composites were prepared with different volume fractions of Indian almond and peepal fibers using the hand layup process. The mechanical and tribological properties of the composites were tested. The epoxy/40 wt% peepal composite showed superior performance compared to all other composites due to the better strength of peepal fiber. Moreover, the same composite displayed the least wear loss and coefficient of friction (COF). The present study confirms that peepal fiber composites match the strength properties of existing industrial composite materials, and that they may be some of the alternative composites for automotive applications.","PeriodicalId":14410,"journal":{"name":"International Polymer Processing","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2024-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Experimental investigation on the mechanical and wear behavior of epoxy/Indian almond/peepal hybrid composites\",\"authors\":\"X. R. Xavier, K. Suderson, K. Viswanath, D. Velmurugan\",\"doi\":\"10.1515/ipp-2023-4440\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Natural fiber-based hybrid composites are gaining more attention in industrial usage due to their low cost, environmental friendliness, and simplicity of processing. In this research, an effort was made to create hybrid natural composites using Indian almond and peepal fibers for applications in the automotive industry. Composites were prepared with different volume fractions of Indian almond and peepal fibers using the hand layup process. The mechanical and tribological properties of the composites were tested. The epoxy/40 wt% peepal composite showed superior performance compared to all other composites due to the better strength of peepal fiber. Moreover, the same composite displayed the least wear loss and coefficient of friction (COF). The present study confirms that peepal fiber composites match the strength properties of existing industrial composite materials, and that they may be some of the alternative composites for automotive applications.\",\"PeriodicalId\":14410,\"journal\":{\"name\":\"International Polymer Processing\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2024-01-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Polymer Processing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1515/ipp-2023-4440\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Polymer Processing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1515/ipp-2023-4440","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

摘要

以天然纤维为基础的混合复合材料因其成本低、环保和加工简单而在工业应用中越来越受到关注。在这项研究中,我们尝试使用印度杏仁和鹅掌楸纤维制造混合天然复合材料,并将其应用于汽车行业。采用手糊工艺,用不同体积分数的印度杏仁和霹雳纤维制备了复合材料。对复合材料的机械性能和摩擦学性能进行了测试。与其他所有复合材料相比,环氧树脂/40 wt%柚木复合材料的性能更优越,这是因为柚木纤维的强度更高。此外,同一种复合材料的磨损损失和摩擦系数(COF)也最小。本研究证实,霹雳纤维复合材料与现有工业复合材料的强度性能相匹配,可作为汽车应用的替代复合材料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Experimental investigation on the mechanical and wear behavior of epoxy/Indian almond/peepal hybrid composites
Natural fiber-based hybrid composites are gaining more attention in industrial usage due to their low cost, environmental friendliness, and simplicity of processing. In this research, an effort was made to create hybrid natural composites using Indian almond and peepal fibers for applications in the automotive industry. Composites were prepared with different volume fractions of Indian almond and peepal fibers using the hand layup process. The mechanical and tribological properties of the composites were tested. The epoxy/40 wt% peepal composite showed superior performance compared to all other composites due to the better strength of peepal fiber. Moreover, the same composite displayed the least wear loss and coefficient of friction (COF). The present study confirms that peepal fiber composites match the strength properties of existing industrial composite materials, and that they may be some of the alternative composites for automotive applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Polymer Processing
International Polymer Processing 工程技术-高分子科学
CiteScore
2.20
自引率
7.70%
发文量
62
审稿时长
6 months
期刊介绍: International Polymer Processing offers original research contributions, invited review papers and recent technological developments in processing thermoplastics, thermosets, elastomers and fibers as well as polymer reaction engineering. For more than 25 years International Polymer Processing, the journal of the Polymer Processing Society, provides strictly peer-reviewed, high-quality articles and rapid communications from the leading experts around the world.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信