TAR:预测塔沙蚕 Antheraea Mylitta 茧壳重量的高精度机器学习模型

IF 1.4 Q3 AGRONOMY
Khasru Alam, Jiaul H. Paik, Soumen Saha, Raviraj V. Suresh
{"title":"TAR:预测塔沙蚕 Antheraea Mylitta 茧壳重量的高精度机器学习模型","authors":"Khasru Alam,&nbsp;Jiaul H. Paik,&nbsp;Soumen Saha,&nbsp;Raviraj V. Suresh","doi":"10.1007/s40003-023-00687-2","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we propose a machine-learning model for predicting the shell weight of silkworm cocoons <i>Antheraea mylitta D.</i> (<i>Saturnidae</i>) without cutting open the cocoon. Our proposed work uses a topology adaptive kernel regression (TAR) to predict the shell weight of cocoons based on a set of non-invasive easy-to-measure cocoon features. We evaluate our model on four datasets from different families of cocoons. The evaluation shows that the proposed model accurately predicts the shell weight and outperforms well-known models, including neural network-based regression.</p></div>","PeriodicalId":7553,"journal":{"name":"Agricultural Research","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2024-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"TAR: A Highly Accurate Machine-Learning Model to Predict the Cocoon Shell Weight of Tasar Silkworm Antheraea Mylitta\",\"authors\":\"Khasru Alam,&nbsp;Jiaul H. Paik,&nbsp;Soumen Saha,&nbsp;Raviraj V. Suresh\",\"doi\":\"10.1007/s40003-023-00687-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, we propose a machine-learning model for predicting the shell weight of silkworm cocoons <i>Antheraea mylitta D.</i> (<i>Saturnidae</i>) without cutting open the cocoon. Our proposed work uses a topology adaptive kernel regression (TAR) to predict the shell weight of cocoons based on a set of non-invasive easy-to-measure cocoon features. We evaluate our model on four datasets from different families of cocoons. The evaluation shows that the proposed model accurately predicts the shell weight and outperforms well-known models, including neural network-based regression.</p></div>\",\"PeriodicalId\":7553,\"journal\":{\"name\":\"Agricultural Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-01-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Agricultural Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40003-023-00687-2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"AGRONOMY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Agricultural Research","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s40003-023-00687-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种机器学习模型,用于在不切开蚕茧的情况下预测蚕茧的壳重。我们提出的工作使用拓扑自适应核回归(TAR),根据一组非侵入式易测量蚕茧特征来预测蚕茧的壳重。我们在来自不同蚕茧家族的四个数据集上评估了我们的模型。评估结果表明,所提出的模型能准确预测茧壳重量,其性能优于众所周知的模型,包括基于神经网络的回归模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
TAR: A Highly Accurate Machine-Learning Model to Predict the Cocoon Shell Weight of Tasar Silkworm Antheraea Mylitta

In this paper, we propose a machine-learning model for predicting the shell weight of silkworm cocoons Antheraea mylitta D. (Saturnidae) without cutting open the cocoon. Our proposed work uses a topology adaptive kernel regression (TAR) to predict the shell weight of cocoons based on a set of non-invasive easy-to-measure cocoon features. We evaluate our model on four datasets from different families of cocoons. The evaluation shows that the proposed model accurately predicts the shell weight and outperforms well-known models, including neural network-based regression.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.80
自引率
0.00%
发文量
24
期刊介绍: The main objective of this initiative is to promote agricultural research and development. The journal will publish high quality original research papers and critical reviews on emerging fields and concepts for providing future directions. The publications will include both applied and basic research covering the following disciplines of agricultural sciences: Genetic resources, genetics and breeding, biotechnology, physiology, biochemistry, management of biotic and abiotic stresses, and nutrition of field crops, horticultural crops, livestock and fishes; agricultural meteorology, environmental sciences, forestry and agro forestry, agronomy, soils and soil management, microbiology, water management, agricultural engineering and technology, agricultural policy, agricultural economics, food nutrition, agricultural statistics, and extension research; impact of climate change and the emerging technologies on agriculture, and the role of agricultural research and innovation for development.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信