利用 Egarch 模型测量银行 Nifty 指数的非对称波动性

Dr. Ch. Naresh, Dr. Ravi Sankar Kummeta, Dr. N. Ramanjaneyulu
{"title":"利用 Egarch 模型测量银行 Nifty 指数的非对称波动性","authors":"Dr. Ch. Naresh, Dr. Ravi Sankar Kummeta, Dr. N. Ramanjaneyulu","doi":"10.54105/ijef.d1671.03021123","DOIUrl":null,"url":null,"abstract":"The paper examines the significance of volatility models in forecasting future volatility for effective portfolio allocation and risk reduction. It compares the performance of symmetric and asymmetric models in estimating conditional variance, and linear versus non-linear GARCH models. Using secondary data from the National Stock Exchange's Nifty Bank index, the study applies Exponential GARCH (1,1) to measure asymmetric volatility and conducts various tests to confirm the suitability of the data for analysis. The results indicate clustering of volatility in Nifty Bank returns over a four-year period, with the presence of asymmetrical effects and leverage constants. The study concludes that negative information has a greater impact on volatility than positive surprises, and that market fluctuations are inversely related to stock market performance. This research provides valuable insights for portfolio selection, risk management, and asset pricing in the context of increasing volatility across various markets and industries.","PeriodicalId":371660,"journal":{"name":"Indian Journal of Economics and Finance","volume":"9 39","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Measuring Asymmetric Volatility of Bank Nifty Index using Egarch Model\",\"authors\":\"Dr. Ch. Naresh, Dr. Ravi Sankar Kummeta, Dr. N. Ramanjaneyulu\",\"doi\":\"10.54105/ijef.d1671.03021123\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper examines the significance of volatility models in forecasting future volatility for effective portfolio allocation and risk reduction. It compares the performance of symmetric and asymmetric models in estimating conditional variance, and linear versus non-linear GARCH models. Using secondary data from the National Stock Exchange's Nifty Bank index, the study applies Exponential GARCH (1,1) to measure asymmetric volatility and conducts various tests to confirm the suitability of the data for analysis. The results indicate clustering of volatility in Nifty Bank returns over a four-year period, with the presence of asymmetrical effects and leverage constants. The study concludes that negative information has a greater impact on volatility than positive surprises, and that market fluctuations are inversely related to stock market performance. This research provides valuable insights for portfolio selection, risk management, and asset pricing in the context of increasing volatility across various markets and industries.\",\"PeriodicalId\":371660,\"journal\":{\"name\":\"Indian Journal of Economics and Finance\",\"volume\":\"9 39\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Indian Journal of Economics and Finance\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.54105/ijef.d1671.03021123\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indian Journal of Economics and Finance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.54105/ijef.d1671.03021123","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文探讨了波动率模型在预测未来波动率以有效分配投资组合和降低风险方面的重要性。它比较了对称模型和非对称模型在估计条件方差方面的表现,以及线性 GARCH 模型和非线性 GARCH 模型的表现。该研究利用国家证券交易所 Nifty 银行指数的二手数据,采用指数 GARCH (1,1) 来衡量非对称波动性,并进行了各种测试以确认数据是否适合分析。结果表明,在四年的时间里,Nifty 银行收益率的波动性是群集的,存在非对称效应和杠杆常数。研究得出结论,负面信息对波动性的影响大于正面惊喜,市场波动与股市表现成反比。在各个市场和行业的波动性不断增加的背景下,这项研究为投资组合选择、风险管理和资产定价提供了宝贵的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Measuring Asymmetric Volatility of Bank Nifty Index using Egarch Model
The paper examines the significance of volatility models in forecasting future volatility for effective portfolio allocation and risk reduction. It compares the performance of symmetric and asymmetric models in estimating conditional variance, and linear versus non-linear GARCH models. Using secondary data from the National Stock Exchange's Nifty Bank index, the study applies Exponential GARCH (1,1) to measure asymmetric volatility and conducts various tests to confirm the suitability of the data for analysis. The results indicate clustering of volatility in Nifty Bank returns over a four-year period, with the presence of asymmetrical effects and leverage constants. The study concludes that negative information has a greater impact on volatility than positive surprises, and that market fluctuations are inversely related to stock market performance. This research provides valuable insights for portfolio selection, risk management, and asset pricing in the context of increasing volatility across various markets and industries.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信