如何确定曲线奇点

J. Elias
{"title":"如何确定曲线奇点","authors":"J. Elias","doi":"10.4153/s000843952400002x","DOIUrl":null,"url":null,"abstract":"<p>We characterize the finite codimension sub-<span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240127042025273-0301:S000843952400002X:S000843952400002X_inline1.png\"><span data-mathjax-type=\"texmath\"><span>${\\mathbf {k}}$</span></span></img></span></span>-algebras of <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240127042025273-0301:S000843952400002X:S000843952400002X_inline2.png\"><span data-mathjax-type=\"texmath\"><span>${\\mathbf {k}}[\\![t]\\!]$</span></span></img></span></span> as the solutions of a computable finite family of higher differential operators. For this end, we establish a duality between such a sub-algebras and the finite codimension <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240127042025273-0301:S000843952400002X:S000843952400002X_inline3.png\"><span data-mathjax-type=\"texmath\"><span>${\\mathbf {k}}$</span></span></img></span></span>-vector spaces of <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240127042025273-0301:S000843952400002X:S000843952400002X_inline4.png\"><span data-mathjax-type=\"texmath\"><span>${\\mathbf {k}}[u]$</span></span></img></span></span>, this ring acts on <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240127042025273-0301:S000843952400002X:S000843952400002X_inline5.png\"><span data-mathjax-type=\"texmath\"><span>${\\mathbf {k}}[\\![t]\\!]$</span></span></img></span></span> by differentiation.</p>","PeriodicalId":501184,"journal":{"name":"Canadian Mathematical Bulletin","volume":"329 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"How to determine a curve singularity\",\"authors\":\"J. Elias\",\"doi\":\"10.4153/s000843952400002x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We characterize the finite codimension sub-<span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240127042025273-0301:S000843952400002X:S000843952400002X_inline1.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>${\\\\mathbf {k}}$</span></span></img></span></span>-algebras of <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240127042025273-0301:S000843952400002X:S000843952400002X_inline2.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>${\\\\mathbf {k}}[\\\\![t]\\\\!]$</span></span></img></span></span> as the solutions of a computable finite family of higher differential operators. For this end, we establish a duality between such a sub-algebras and the finite codimension <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240127042025273-0301:S000843952400002X:S000843952400002X_inline3.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>${\\\\mathbf {k}}$</span></span></img></span></span>-vector spaces of <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240127042025273-0301:S000843952400002X:S000843952400002X_inline4.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>${\\\\mathbf {k}}[u]$</span></span></img></span></span>, this ring acts on <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240127042025273-0301:S000843952400002X:S000843952400002X_inline5.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>${\\\\mathbf {k}}[\\\\![t]\\\\!]$</span></span></img></span></span> by differentiation.</p>\",\"PeriodicalId\":501184,\"journal\":{\"name\":\"Canadian Mathematical Bulletin\",\"volume\":\"329 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Canadian Mathematical Bulletin\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4153/s000843952400002x\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Canadian Mathematical Bulletin","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4153/s000843952400002x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们将${\mathbf {k}}$ 的有限标度子${\mathbf {k}}[\![t]\!]$ 描述为可计算的有限高微分算子族的解。为此,我们建立了这样一个子代数与${/mathbf {k}}[u]$ 的有限维${/mathbf {k}}$ 向量空间之间的对偶性,这个环通过微分作用于${/mathbf {k}}[\![t]\!]$ 。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
How to determine a curve singularity

We characterize the finite codimension sub-${\mathbf {k}}$-algebras of ${\mathbf {k}}[\![t]\!]$ as the solutions of a computable finite family of higher differential operators. For this end, we establish a duality between such a sub-algebras and the finite codimension ${\mathbf {k}}$-vector spaces of ${\mathbf {k}}[u]$, this ring acts on ${\mathbf {k}}[\![t]\!]$ by differentiation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信