通过分离记忆检索生成数学单词问题

IF 4 3区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS
Wei Qin, Xiaowei Wang, Zhenzhen Hu, Lei Wang, Yunshi Lan, Richang Hong
{"title":"通过分离记忆检索生成数学单词问题","authors":"Wei Qin, Xiaowei Wang, Zhenzhen Hu, Lei Wang, Yunshi Lan, Richang Hong","doi":"10.1145/3639569","DOIUrl":null,"url":null,"abstract":"<p>The task of math word problem(MWP) generation, which generates an MWP given an equation and relevant topic words, has increasingly attracted researchers’ attention. In this work, we introduce a simple memory retrieval module to search related training MWPs, which are used to augment the generation. To retrieve more relevant training data, we also propose a disentangled memory retrieval module based on the simple memory retrieval module. To this end, we first disentangle the training MWPs into logical description and scenario description and then record them in respective memory modules. Later, we use the given equation and topic words as queries to retrieve relevant logical descriptions and scenario descriptions from the corresponding memory modules respectively. The retrieved results are then used to complement the process of the MWP generation. Extensive experiments and ablation studies verify the superior performance of our method and the effectiveness of each proposed module. The code is available at https://github.com/mwp-g/MWPG-DMR.</p>","PeriodicalId":49249,"journal":{"name":"ACM Transactions on Knowledge Discovery from Data","volume":"32 1","pages":""},"PeriodicalIF":4.0000,"publicationDate":"2024-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Math Word Problem Generation via Disentangled Memory Retrieval\",\"authors\":\"Wei Qin, Xiaowei Wang, Zhenzhen Hu, Lei Wang, Yunshi Lan, Richang Hong\",\"doi\":\"10.1145/3639569\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The task of math word problem(MWP) generation, which generates an MWP given an equation and relevant topic words, has increasingly attracted researchers’ attention. In this work, we introduce a simple memory retrieval module to search related training MWPs, which are used to augment the generation. To retrieve more relevant training data, we also propose a disentangled memory retrieval module based on the simple memory retrieval module. To this end, we first disentangle the training MWPs into logical description and scenario description and then record them in respective memory modules. Later, we use the given equation and topic words as queries to retrieve relevant logical descriptions and scenario descriptions from the corresponding memory modules respectively. The retrieved results are then used to complement the process of the MWP generation. Extensive experiments and ablation studies verify the superior performance of our method and the effectiveness of each proposed module. The code is available at https://github.com/mwp-g/MWPG-DMR.</p>\",\"PeriodicalId\":49249,\"journal\":{\"name\":\"ACM Transactions on Knowledge Discovery from Data\",\"volume\":\"32 1\",\"pages\":\"\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2024-01-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Knowledge Discovery from Data\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1145/3639569\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Knowledge Discovery from Data","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3639569","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

数学单词问题(MWP)生成任务是在给定方程和相关主题词的情况下生成一个 MWP,这一任务越来越受到研究人员的关注。在这项工作中,我们引入了一个简单的记忆检索模块,用于搜索相关的训练 MWP,并将其用于增强生成。为了检索到更多相关的训练数据,我们还在简单记忆检索模块的基础上提出了一种分解记忆检索模块。为此,我们首先将训练 MWP 分解为逻辑描述和场景描述,然后将其记录在相应的记忆模块中。之后,我们使用给定的方程和主题词作为查询,分别从相应的记忆模块中检索相关的逻辑描述和场景描述。检索结果将用于补充 MWP 生成过程。广泛的实验和消融研究验证了我们的方法的卓越性能和每个拟议模块的有效性。代码见 https://github.com/mwp-g/MWPG-DMR。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Math Word Problem Generation via Disentangled Memory Retrieval

The task of math word problem(MWP) generation, which generates an MWP given an equation and relevant topic words, has increasingly attracted researchers’ attention. In this work, we introduce a simple memory retrieval module to search related training MWPs, which are used to augment the generation. To retrieve more relevant training data, we also propose a disentangled memory retrieval module based on the simple memory retrieval module. To this end, we first disentangle the training MWPs into logical description and scenario description and then record them in respective memory modules. Later, we use the given equation and topic words as queries to retrieve relevant logical descriptions and scenario descriptions from the corresponding memory modules respectively. The retrieved results are then used to complement the process of the MWP generation. Extensive experiments and ablation studies verify the superior performance of our method and the effectiveness of each proposed module. The code is available at https://github.com/mwp-g/MWPG-DMR.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACM Transactions on Knowledge Discovery from Data
ACM Transactions on Knowledge Discovery from Data COMPUTER SCIENCE, INFORMATION SYSTEMS-COMPUTER SCIENCE, SOFTWARE ENGINEERING
CiteScore
6.70
自引率
5.60%
发文量
172
审稿时长
3 months
期刊介绍: TKDD welcomes papers on a full range of research in the knowledge discovery and analysis of diverse forms of data. Such subjects include, but are not limited to: scalable and effective algorithms for data mining and big data analysis, mining brain networks, mining data streams, mining multi-media data, mining high-dimensional data, mining text, Web, and semi-structured data, mining spatial and temporal data, data mining for community generation, social network analysis, and graph structured data, security and privacy issues in data mining, visual, interactive and online data mining, pre-processing and post-processing for data mining, robust and scalable statistical methods, data mining languages, foundations of data mining, KDD framework and process, and novel applications and infrastructures exploiting data mining technology including massively parallel processing and cloud computing platforms. TKDD encourages papers that explore the above subjects in the context of large distributed networks of computers, parallel or multiprocessing computers, or new data devices. TKDD also encourages papers that describe emerging data mining applications that cannot be satisfied by the current data mining technology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信