Ana Madevska Bogdanova, Bojana Koteska, Teodora Vićentić, Stefan D. Ilić, Miona Tomić, Marko Spasenović
{"title":"利用激光诱导石墨烯呼吸传感器估算血氧饱和度","authors":"Ana Madevska Bogdanova, Bojana Koteska, Teodora Vićentić, Stefan D. Ilić, Miona Tomić, Marko Spasenović","doi":"10.1155/2024/4696031","DOIUrl":null,"url":null,"abstract":"Measuring blood oxygen saturation (SpO<sub>2</sub>) is crucial in a triage process for identifying patients with respiratory distress or shock, since low SpO<sub>2</sub> levels indicate compromised hemostability and the need for priority treatment. This paper explores the use of wearable mechanical deflection sensors based on laser-induced graphene (LIG) for SpO<sub>2</sub> estimation. The LIG sensors are attached to a subject’s chest for real-time monitoring of respiratory signals. We have developed a novel database of the respiratory signals, with corresponding SpO<sub>2</sub> values ranging from 86% to 100%. The database is used to develop an artificial neural network model for SpO<sub>2</sub> estimation. The neural network performance is promising, with regression metrics mean squared error = 0.184, mean absolute error = 0.301, root mean squared error = 0.429, and <i>R</i>-squared = 0.804. The use of mechanical respiration sensors in combination with neural networks in biosensing opens new possibilities for noninvasive SpO<sub>2</sub> monitoring and other innovative applications.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Blood Oxygen Saturation Estimation with Laser-Induced Graphene Respiration Sensor\",\"authors\":\"Ana Madevska Bogdanova, Bojana Koteska, Teodora Vićentić, Stefan D. Ilić, Miona Tomić, Marko Spasenović\",\"doi\":\"10.1155/2024/4696031\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Measuring blood oxygen saturation (SpO<sub>2</sub>) is crucial in a triage process for identifying patients with respiratory distress or shock, since low SpO<sub>2</sub> levels indicate compromised hemostability and the need for priority treatment. This paper explores the use of wearable mechanical deflection sensors based on laser-induced graphene (LIG) for SpO<sub>2</sub> estimation. The LIG sensors are attached to a subject’s chest for real-time monitoring of respiratory signals. We have developed a novel database of the respiratory signals, with corresponding SpO<sub>2</sub> values ranging from 86% to 100%. The database is used to develop an artificial neural network model for SpO<sub>2</sub> estimation. The neural network performance is promising, with regression metrics mean squared error = 0.184, mean absolute error = 0.301, root mean squared error = 0.429, and <i>R</i>-squared = 0.804. The use of mechanical respiration sensors in combination with neural networks in biosensing opens new possibilities for noninvasive SpO<sub>2</sub> monitoring and other innovative applications.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-01-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1155/2024/4696031\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1155/2024/4696031","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Blood Oxygen Saturation Estimation with Laser-Induced Graphene Respiration Sensor
Measuring blood oxygen saturation (SpO2) is crucial in a triage process for identifying patients with respiratory distress or shock, since low SpO2 levels indicate compromised hemostability and the need for priority treatment. This paper explores the use of wearable mechanical deflection sensors based on laser-induced graphene (LIG) for SpO2 estimation. The LIG sensors are attached to a subject’s chest for real-time monitoring of respiratory signals. We have developed a novel database of the respiratory signals, with corresponding SpO2 values ranging from 86% to 100%. The database is used to develop an artificial neural network model for SpO2 estimation. The neural network performance is promising, with regression metrics mean squared error = 0.184, mean absolute error = 0.301, root mean squared error = 0.429, and R-squared = 0.804. The use of mechanical respiration sensors in combination with neural networks in biosensing opens new possibilities for noninvasive SpO2 monitoring and other innovative applications.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.