利用注意力驱动的生成因子学习构建动态 CVaR 投资组合

IF 1.9 3区 经济学 Q2 ECONOMICS
Chuting Sun , Qi Wu , Xing Yan
{"title":"利用注意力驱动的生成因子学习构建动态 CVaR 投资组合","authors":"Chuting Sun ,&nbsp;Qi Wu ,&nbsp;Xing Yan","doi":"10.1016/j.jedc.2024.104821","DOIUrl":null,"url":null,"abstract":"<div><p>The dynamic portfolio construction problem requires dynamic modeling of the joint distribution of multivariate stock returns<span>. To achieve this, we propose a dynamic generative factor model which uses random variable transformation as an implicit way of distribution modeling and relies on the Attention-GRU network for dynamic learning and forecasting. The proposed model captures the dynamic dependence among multivariate stock returns, especially focusing on the tail-side properties. We also propose a two-step iterative algorithm to train the model and then predict the time-varying model parameters, including the time-invariant tail parameters. At each investment date, we can easily simulate new samples from the learned generative model, and we further perform CVaR portfolio optimization with the simulated samples to form a dynamic portfolio strategy. The numerical experiment on stock data shows that our model leads to wiser investments that promise higher reward-risk ratios and present lower tail risks.</span></p></div>","PeriodicalId":48314,"journal":{"name":"Journal of Economic Dynamics & Control","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2024-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dynamic CVaR portfolio construction with attention-powered generative factor learning\",\"authors\":\"Chuting Sun ,&nbsp;Qi Wu ,&nbsp;Xing Yan\",\"doi\":\"10.1016/j.jedc.2024.104821\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The dynamic portfolio construction problem requires dynamic modeling of the joint distribution of multivariate stock returns<span>. To achieve this, we propose a dynamic generative factor model which uses random variable transformation as an implicit way of distribution modeling and relies on the Attention-GRU network for dynamic learning and forecasting. The proposed model captures the dynamic dependence among multivariate stock returns, especially focusing on the tail-side properties. We also propose a two-step iterative algorithm to train the model and then predict the time-varying model parameters, including the time-invariant tail parameters. At each investment date, we can easily simulate new samples from the learned generative model, and we further perform CVaR portfolio optimization with the simulated samples to form a dynamic portfolio strategy. The numerical experiment on stock data shows that our model leads to wiser investments that promise higher reward-risk ratios and present lower tail risks.</span></p></div>\",\"PeriodicalId\":48314,\"journal\":{\"name\":\"Journal of Economic Dynamics & Control\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-01-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Economic Dynamics & Control\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0165188924000137\",\"RegionNum\":3,\"RegionCategory\":\"经济学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ECONOMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Economic Dynamics & Control","FirstCategoryId":"96","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0165188924000137","RegionNum":3,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0

摘要

动态投资组合构建问题需要对多元股票收益的联合分布进行动态建模。为此,我们提出了一种动态生成因子模型,该模型使用随机变量变换作为分布建模的隐含方式,并依靠注意力-GRU 网络进行动态学习和预测。所提出的模型捕捉到了多元股票收益率之间的动态依赖关系,尤其侧重于尾部属性。我们还提出了一种两步迭代算法来训练模型,然后预测时变模型参数,包括时变尾部参数。在每个投资日期,我们都可以很容易地从学习到的生成模型中模拟出新的样本,并利用模拟样本进一步进行 CVaR 投资组合优化,从而形成动态投资组合策略。股票数据的数值实验表明,我们的模型能带来更明智的投资,承诺更高的回报风险比,并带来更低的尾部风险。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dynamic CVaR portfolio construction with attention-powered generative factor learning

The dynamic portfolio construction problem requires dynamic modeling of the joint distribution of multivariate stock returns. To achieve this, we propose a dynamic generative factor model which uses random variable transformation as an implicit way of distribution modeling and relies on the Attention-GRU network for dynamic learning and forecasting. The proposed model captures the dynamic dependence among multivariate stock returns, especially focusing on the tail-side properties. We also propose a two-step iterative algorithm to train the model and then predict the time-varying model parameters, including the time-invariant tail parameters. At each investment date, we can easily simulate new samples from the learned generative model, and we further perform CVaR portfolio optimization with the simulated samples to form a dynamic portfolio strategy. The numerical experiment on stock data shows that our model leads to wiser investments that promise higher reward-risk ratios and present lower tail risks.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.10
自引率
10.50%
发文量
199
期刊介绍: The journal provides an outlet for publication of research concerning all theoretical and empirical aspects of economic dynamics and control as well as the development and use of computational methods in economics and finance. Contributions regarding computational methods may include, but are not restricted to, artificial intelligence, databases, decision support systems, genetic algorithms, modelling languages, neural networks, numerical algorithms for optimization, control and equilibria, parallel computing and qualitative reasoning.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信