{"title":"利用注意力驱动的生成因子学习构建动态 CVaR 投资组合","authors":"Chuting Sun , Qi Wu , Xing Yan","doi":"10.1016/j.jedc.2024.104821","DOIUrl":null,"url":null,"abstract":"<div><p>The dynamic portfolio construction problem requires dynamic modeling of the joint distribution of multivariate stock returns<span>. To achieve this, we propose a dynamic generative factor model which uses random variable transformation as an implicit way of distribution modeling and relies on the Attention-GRU network for dynamic learning and forecasting. The proposed model captures the dynamic dependence among multivariate stock returns, especially focusing on the tail-side properties. We also propose a two-step iterative algorithm to train the model and then predict the time-varying model parameters, including the time-invariant tail parameters. At each investment date, we can easily simulate new samples from the learned generative model, and we further perform CVaR portfolio optimization with the simulated samples to form a dynamic portfolio strategy. The numerical experiment on stock data shows that our model leads to wiser investments that promise higher reward-risk ratios and present lower tail risks.</span></p></div>","PeriodicalId":48314,"journal":{"name":"Journal of Economic Dynamics & Control","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2024-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dynamic CVaR portfolio construction with attention-powered generative factor learning\",\"authors\":\"Chuting Sun , Qi Wu , Xing Yan\",\"doi\":\"10.1016/j.jedc.2024.104821\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The dynamic portfolio construction problem requires dynamic modeling of the joint distribution of multivariate stock returns<span>. To achieve this, we propose a dynamic generative factor model which uses random variable transformation as an implicit way of distribution modeling and relies on the Attention-GRU network for dynamic learning and forecasting. The proposed model captures the dynamic dependence among multivariate stock returns, especially focusing on the tail-side properties. We also propose a two-step iterative algorithm to train the model and then predict the time-varying model parameters, including the time-invariant tail parameters. At each investment date, we can easily simulate new samples from the learned generative model, and we further perform CVaR portfolio optimization with the simulated samples to form a dynamic portfolio strategy. The numerical experiment on stock data shows that our model leads to wiser investments that promise higher reward-risk ratios and present lower tail risks.</span></p></div>\",\"PeriodicalId\":48314,\"journal\":{\"name\":\"Journal of Economic Dynamics & Control\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-01-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Economic Dynamics & Control\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0165188924000137\",\"RegionNum\":3,\"RegionCategory\":\"经济学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ECONOMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Economic Dynamics & Control","FirstCategoryId":"96","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0165188924000137","RegionNum":3,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECONOMICS","Score":null,"Total":0}
Dynamic CVaR portfolio construction with attention-powered generative factor learning
The dynamic portfolio construction problem requires dynamic modeling of the joint distribution of multivariate stock returns. To achieve this, we propose a dynamic generative factor model which uses random variable transformation as an implicit way of distribution modeling and relies on the Attention-GRU network for dynamic learning and forecasting. The proposed model captures the dynamic dependence among multivariate stock returns, especially focusing on the tail-side properties. We also propose a two-step iterative algorithm to train the model and then predict the time-varying model parameters, including the time-invariant tail parameters. At each investment date, we can easily simulate new samples from the learned generative model, and we further perform CVaR portfolio optimization with the simulated samples to form a dynamic portfolio strategy. The numerical experiment on stock data shows that our model leads to wiser investments that promise higher reward-risk ratios and present lower tail risks.
期刊介绍:
The journal provides an outlet for publication of research concerning all theoretical and empirical aspects of economic dynamics and control as well as the development and use of computational methods in economics and finance. Contributions regarding computational methods may include, but are not restricted to, artificial intelligence, databases, decision support systems, genetic algorithms, modelling languages, neural networks, numerical algorithms for optimization, control and equilibria, parallel computing and qualitative reasoning.