富镍层状氧化物 LiNi0.83Co0.12Mn0.05-xAlxO2 阴极的高速率能力和循环稳定性:纳米纤维与纳米颗粒形态对比

Soumyadip Mitra, Chandran Sudakar
{"title":"富镍层状氧化物 LiNi0.83Co0.12Mn0.05-xAlxO2 阴极的高速率能力和循环稳定性:纳米纤维与纳米颗粒形态对比","authors":"Soumyadip Mitra,&nbsp;Chandran Sudakar","doi":"10.1002/bte2.20230066","DOIUrl":null,"url":null,"abstract":"<p>High energy density Ni-rich layered oxide cathodes LiNi<sub>0.83</sub>Co<sub>0.12</sub>Mn<sub>0.05−<i>x</i></sub>Al<sub><i>x</i></sub>O<sub>2</sub> (<i>x</i> = 0 [NMC], 0.025 [NMCA], 0.05 [NCA]) are fabricated in two different microstructural forms: (i) nanoparticles (NP) and (ii) nanofibers (NF), to evaluate the morphology and compositional effect on the electrochemical properties using same precursors, with the latter fabricated by electrospinning process. Although all the cathodes exhibit a similar crystal structure as confirmed using X-ray diffraction and Raman spectroscopy, the contrasting difference is observed in their electrochemical properties. XRD and XPS analyses indicate a higher amount of cationic disorder for the NP cathodes compared to their NF counterparts. Nanofibrous Ni-rich layered oxide cathodes exhibit higher discharge capacities at all C-rates in comparison to NP cathodes. When cycled at 1C-rate for 100 cycles, capacity retention of 81% is observed for NCA-NF, which is superior to all cathodes. Voltage decay as a function of the charge–discharge cycle is found to be low (0.2 mV/cycle) for nanofibrous cathodes compared to 1.5 mV/cycle for NP cathodes. The good rate capability and cyclic stability of nanofibrous Ni-rich layered oxide cathodes are attributed to a shorter pathway of Li<sup>+</sup> diffusion and a large proportion of the active surface area.</p>","PeriodicalId":8807,"journal":{"name":"Battery Energy","volume":"3 3","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/bte2.20230066","citationCount":"0","resultStr":"{\"title\":\"High rate capability and cyclic stability of Ni-rich layered oxide LiNi0.83Co0.12Mn0.05−xAlxO2 cathodes: Nanofiber versus nanoparticle morphology\",\"authors\":\"Soumyadip Mitra,&nbsp;Chandran Sudakar\",\"doi\":\"10.1002/bte2.20230066\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>High energy density Ni-rich layered oxide cathodes LiNi<sub>0.83</sub>Co<sub>0.12</sub>Mn<sub>0.05−<i>x</i></sub>Al<sub><i>x</i></sub>O<sub>2</sub> (<i>x</i> = 0 [NMC], 0.025 [NMCA], 0.05 [NCA]) are fabricated in two different microstructural forms: (i) nanoparticles (NP) and (ii) nanofibers (NF), to evaluate the morphology and compositional effect on the electrochemical properties using same precursors, with the latter fabricated by electrospinning process. Although all the cathodes exhibit a similar crystal structure as confirmed using X-ray diffraction and Raman spectroscopy, the contrasting difference is observed in their electrochemical properties. XRD and XPS analyses indicate a higher amount of cationic disorder for the NP cathodes compared to their NF counterparts. Nanofibrous Ni-rich layered oxide cathodes exhibit higher discharge capacities at all C-rates in comparison to NP cathodes. When cycled at 1C-rate for 100 cycles, capacity retention of 81% is observed for NCA-NF, which is superior to all cathodes. Voltage decay as a function of the charge–discharge cycle is found to be low (0.2 mV/cycle) for nanofibrous cathodes compared to 1.5 mV/cycle for NP cathodes. The good rate capability and cyclic stability of nanofibrous Ni-rich layered oxide cathodes are attributed to a shorter pathway of Li<sup>+</sup> diffusion and a large proportion of the active surface area.</p>\",\"PeriodicalId\":8807,\"journal\":{\"name\":\"Battery Energy\",\"volume\":\"3 3\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/bte2.20230066\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Battery Energy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/bte2.20230066\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Battery Energy","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/bte2.20230066","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

通过使用相同的前驱体,以两种不同的微结构形式:(i) 纳米颗粒 (NP) 和 (ii) 纳米纤维 (NF) 制备了高能量密度富镍层状氧化物阴极 LiNi0.83Co0.12Mn0.05-xAlxO2(x = 0 [NMC]、0.025 [NMCA]、0.05 [NCA]),以评估其形态和组成对电化学特性的影响。尽管通过 X 射线衍射和拉曼光谱证实,所有阴极都呈现出相似的晶体结构,但在电化学特性方面却出现了截然不同的差异。X 射线衍射和 XPS 分析表明,与 NF 阴极相比,NP 阴极的阳离子无序度更高。与 NP 阴极相比,纳米纤维状富镍层状氧化物阴极在所有 C 速率下都表现出更高的放电容量。在 1C 速率下循环 100 次时,NCA-NF 的容量保持率为 81%,优于所有阴极。与 NP 阴极的 1.5 mV/周期相比,纳米纤维阴极在充放电周期中的电压衰减较低(0.2 mV/周期)。纳米纤维状富镍层状氧化物阴极具有良好的速率能力和循环稳定性,这归功于较短的 Li+ 扩散途径和较大比例的活性表面积。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

High rate capability and cyclic stability of Ni-rich layered oxide LiNi0.83Co0.12Mn0.05−xAlxO2 cathodes: Nanofiber versus nanoparticle morphology

High rate capability and cyclic stability of Ni-rich layered oxide LiNi0.83Co0.12Mn0.05−xAlxO2 cathodes: Nanofiber versus nanoparticle morphology

High rate capability and cyclic stability of Ni-rich layered oxide LiNi0.83Co0.12Mn0.05−xAlxO2 cathodes: Nanofiber versus nanoparticle morphology

High energy density Ni-rich layered oxide cathodes LiNi0.83Co0.12Mn0.05−xAlxO2 (x = 0 [NMC], 0.025 [NMCA], 0.05 [NCA]) are fabricated in two different microstructural forms: (i) nanoparticles (NP) and (ii) nanofibers (NF), to evaluate the morphology and compositional effect on the electrochemical properties using same precursors, with the latter fabricated by electrospinning process. Although all the cathodes exhibit a similar crystal structure as confirmed using X-ray diffraction and Raman spectroscopy, the contrasting difference is observed in their electrochemical properties. XRD and XPS analyses indicate a higher amount of cationic disorder for the NP cathodes compared to their NF counterparts. Nanofibrous Ni-rich layered oxide cathodes exhibit higher discharge capacities at all C-rates in comparison to NP cathodes. When cycled at 1C-rate for 100 cycles, capacity retention of 81% is observed for NCA-NF, which is superior to all cathodes. Voltage decay as a function of the charge–discharge cycle is found to be low (0.2 mV/cycle) for nanofibrous cathodes compared to 1.5 mV/cycle for NP cathodes. The good rate capability and cyclic stability of nanofibrous Ni-rich layered oxide cathodes are attributed to a shorter pathway of Li+ diffusion and a large proportion of the active surface area.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.60
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信