氮氧化物的连续流合成

IF 2 4区 化学 Q3 CHEMISTRY, MULTIDISCIPLINARY
Adam T. McCormack, John C. Stephens
{"title":"氮氧化物的连续流合成","authors":"Adam T. McCormack,&nbsp;John C. Stephens","doi":"10.1007/s41981-024-00307-2","DOIUrl":null,"url":null,"abstract":"<div><p>Azo compounds find use in many areas of science, displaying crucial properties for important applications as photoconductive organic pigments, fluorescent quenchers, paints, cosmetics, inks, and in the large and valuable dye industry. Due to the unstable intermediates, and the exothermic and fast reactions used in their synthesis, high value azo compounds are excellent candidates for continuous flow manufacturing. This comprehensive review covers the progress made to date on developing continuous flow systems for azo synthesis and reflects on the main challenges still to be addressed, including scale up, conversion, product purity, and environmental impact. The further development of integrated continuous flow processes has the potential to help tackle these challenges and deliver improved methods for azo compound generation.</p></div>","PeriodicalId":630,"journal":{"name":"Journal of Flow Chemistry","volume":"14 2","pages":"377 - 396"},"PeriodicalIF":2.0000,"publicationDate":"2024-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s41981-024-00307-2.pdf","citationCount":"0","resultStr":"{\"title\":\"The continuous flow synthesis of azos\",\"authors\":\"Adam T. McCormack,&nbsp;John C. Stephens\",\"doi\":\"10.1007/s41981-024-00307-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Azo compounds find use in many areas of science, displaying crucial properties for important applications as photoconductive organic pigments, fluorescent quenchers, paints, cosmetics, inks, and in the large and valuable dye industry. Due to the unstable intermediates, and the exothermic and fast reactions used in their synthesis, high value azo compounds are excellent candidates for continuous flow manufacturing. This comprehensive review covers the progress made to date on developing continuous flow systems for azo synthesis and reflects on the main challenges still to be addressed, including scale up, conversion, product purity, and environmental impact. The further development of integrated continuous flow processes has the potential to help tackle these challenges and deliver improved methods for azo compound generation.</p></div>\",\"PeriodicalId\":630,\"journal\":{\"name\":\"Journal of Flow Chemistry\",\"volume\":\"14 2\",\"pages\":\"377 - 396\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2024-01-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s41981-024-00307-2.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Flow Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s41981-024-00307-2\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Flow Chemistry","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s41981-024-00307-2","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

偶氮化合物在许多科学领域都有应用,在光导有机颜料、荧光淬灭剂、涂料、化妆品、油墨以及庞大而宝贵的染料工业等重要应用中显示出至关重要的特性。由于不稳定的中间体以及合成过程中的放热和快速反应,高价值偶氮化合物是连续流生产的理想选择。本综述介绍了迄今为止在开发偶氮合成连续流系统方面取得的进展,并探讨了仍需应对的主要挑战,包括规模扩大、转化率、产品纯度和环境影响。集成连续流工艺的进一步发展有可能帮助应对这些挑战,并提供更好的偶氮化合物生成方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

The continuous flow synthesis of azos

The continuous flow synthesis of azos

Azo compounds find use in many areas of science, displaying crucial properties for important applications as photoconductive organic pigments, fluorescent quenchers, paints, cosmetics, inks, and in the large and valuable dye industry. Due to the unstable intermediates, and the exothermic and fast reactions used in their synthesis, high value azo compounds are excellent candidates for continuous flow manufacturing. This comprehensive review covers the progress made to date on developing continuous flow systems for azo synthesis and reflects on the main challenges still to be addressed, including scale up, conversion, product purity, and environmental impact. The further development of integrated continuous flow processes has the potential to help tackle these challenges and deliver improved methods for azo compound generation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Flow Chemistry
Journal of Flow Chemistry CHEMISTRY, MULTIDISCIPLINARY-
CiteScore
6.40
自引率
3.70%
发文量
29
审稿时长
>12 weeks
期刊介绍: The main focus of the journal is flow chemistry in inorganic, organic, analytical and process chemistry in the academic research as well as in applied research and development in the pharmaceutical, agrochemical, fine-chemical, petro- chemical, fragrance industry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信