Erika R. Moore-Pollard, Daniel S. Jones, Jennifer R. Mandel
{"title":"Compositae-ParaLoss-1272:向日葵特异性互补探针集可在复杂系统的系统发生组分析中减少旁系亲属的数量","authors":"Erika R. Moore-Pollard, Daniel S. Jones, Jennifer R. Mandel","doi":"10.1002/aps3.11568","DOIUrl":null,"url":null,"abstract":"<div>\n \n \n <section>\n \n <h3> Premise</h3>\n \n <p>A family-specific probe set for sunflowers, Compositae-1061, enables family-wide phylogenomic studies and investigations at lower taxonomic levels, but may lack resolution at genus to species levels, especially in groups complicated by polyploidy and hybridization.</p>\n </section>\n \n <section>\n \n <h3> Methods</h3>\n \n <p>We developed a Hyb-Seq probe set, Compositae-ParaLoss-1272, that targets orthologous loci in Asteraceae. We tested its efficiency across the family by simulating target enrichment sequencing in silico. Additionally, we tested its effectiveness at lower taxonomic levels in the historically complex genus <i>Packera</i>. We performed Hyb-Seq with Compositae-ParaLoss-1272 for 19 <i>Packera</i> taxa that were previously studied using Compositae-1061. The resulting sequences from each probe set, plus a combination of both, were used to generate phylogenies, compare topologies, and assess node support.</p>\n </section>\n \n <section>\n \n <h3> Results</h3>\n \n <p>We report that Compositae-ParaLoss-1272 captured loci across all tested Asteraceae members, had less gene tree discordance, and retained longer loci than Compositae-1061. Most notably, Compositae-ParaLoss-1272 recovered substantially fewer paralogous sequences than Compositae-1061, with only ~5% of the recovered loci reporting as paralogous, compared to ~59% with Compositae-1061.</p>\n </section>\n \n <section>\n \n <h3> Discussion</h3>\n \n <p>Given the complexity of plant evolutionary histories, assigning orthology for phylogenomic analyses will continue to be challenging. However, we anticipate Compositae-ParaLoss-1272 will provide improved resolution and utility for studies of complex groups and lower taxonomic levels in the sunflower family.</p>\n </section>\n </div>","PeriodicalId":8022,"journal":{"name":"Applications in Plant Sciences","volume":"12 1","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2024-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/aps3.11568","citationCount":"0","resultStr":"{\"title\":\"Compositae-ParaLoss-1272: A complementary sunflower-specific probe set reduces paralogs in phylogenomic analyses of complex systems\",\"authors\":\"Erika R. Moore-Pollard, Daniel S. Jones, Jennifer R. Mandel\",\"doi\":\"10.1002/aps3.11568\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n \\n <section>\\n \\n <h3> Premise</h3>\\n \\n <p>A family-specific probe set for sunflowers, Compositae-1061, enables family-wide phylogenomic studies and investigations at lower taxonomic levels, but may lack resolution at genus to species levels, especially in groups complicated by polyploidy and hybridization.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Methods</h3>\\n \\n <p>We developed a Hyb-Seq probe set, Compositae-ParaLoss-1272, that targets orthologous loci in Asteraceae. We tested its efficiency across the family by simulating target enrichment sequencing in silico. Additionally, we tested its effectiveness at lower taxonomic levels in the historically complex genus <i>Packera</i>. We performed Hyb-Seq with Compositae-ParaLoss-1272 for 19 <i>Packera</i> taxa that were previously studied using Compositae-1061. The resulting sequences from each probe set, plus a combination of both, were used to generate phylogenies, compare topologies, and assess node support.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Results</h3>\\n \\n <p>We report that Compositae-ParaLoss-1272 captured loci across all tested Asteraceae members, had less gene tree discordance, and retained longer loci than Compositae-1061. Most notably, Compositae-ParaLoss-1272 recovered substantially fewer paralogous sequences than Compositae-1061, with only ~5% of the recovered loci reporting as paralogous, compared to ~59% with Compositae-1061.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Discussion</h3>\\n \\n <p>Given the complexity of plant evolutionary histories, assigning orthology for phylogenomic analyses will continue to be challenging. However, we anticipate Compositae-ParaLoss-1272 will provide improved resolution and utility for studies of complex groups and lower taxonomic levels in the sunflower family.</p>\\n </section>\\n </div>\",\"PeriodicalId\":8022,\"journal\":{\"name\":\"Applications in Plant Sciences\",\"volume\":\"12 1\",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-01-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/aps3.11568\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applications in Plant Sciences\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/aps3.11568\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applications in Plant Sciences","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/aps3.11568","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
Compositae-ParaLoss-1272: A complementary sunflower-specific probe set reduces paralogs in phylogenomic analyses of complex systems
Premise
A family-specific probe set for sunflowers, Compositae-1061, enables family-wide phylogenomic studies and investigations at lower taxonomic levels, but may lack resolution at genus to species levels, especially in groups complicated by polyploidy and hybridization.
Methods
We developed a Hyb-Seq probe set, Compositae-ParaLoss-1272, that targets orthologous loci in Asteraceae. We tested its efficiency across the family by simulating target enrichment sequencing in silico. Additionally, we tested its effectiveness at lower taxonomic levels in the historically complex genus Packera. We performed Hyb-Seq with Compositae-ParaLoss-1272 for 19 Packera taxa that were previously studied using Compositae-1061. The resulting sequences from each probe set, plus a combination of both, were used to generate phylogenies, compare topologies, and assess node support.
Results
We report that Compositae-ParaLoss-1272 captured loci across all tested Asteraceae members, had less gene tree discordance, and retained longer loci than Compositae-1061. Most notably, Compositae-ParaLoss-1272 recovered substantially fewer paralogous sequences than Compositae-1061, with only ~5% of the recovered loci reporting as paralogous, compared to ~59% with Compositae-1061.
Discussion
Given the complexity of plant evolutionary histories, assigning orthology for phylogenomic analyses will continue to be challenging. However, we anticipate Compositae-ParaLoss-1272 will provide improved resolution and utility for studies of complex groups and lower taxonomic levels in the sunflower family.
期刊介绍:
Applications in Plant Sciences (APPS) is a monthly, peer-reviewed, open access journal promoting the rapid dissemination of newly developed, innovative tools and protocols in all areas of the plant sciences, including genetics, structure, function, development, evolution, systematics, and ecology. Given the rapid progress today in technology and its application in the plant sciences, the goal of APPS is to foster communication within the plant science community to advance scientific research. APPS is a publication of the Botanical Society of America, originating in 2009 as the American Journal of Botany''s online-only section, AJB Primer Notes & Protocols in the Plant Sciences.
APPS publishes the following types of articles: (1) Protocol Notes describe new methods and technological advancements; (2) Genomic Resources Articles characterize the development and demonstrate the usefulness of newly developed genomic resources, including transcriptomes; (3) Software Notes detail new software applications; (4) Application Articles illustrate the application of a new protocol, method, or software application within the context of a larger study; (5) Review Articles evaluate available techniques, methods, or protocols; (6) Primer Notes report novel genetic markers with evidence of wide applicability.