纳米结构 TUC4C8 和 GTUC 邻域不规则拓扑指数的数学概念和实证研究

IF 1.3 4区 数学 Q1 MATHEMATICS
Shahid Zaman, Asad Ullah, Rabia Naseer, Kavi Bahri Rasool
{"title":"纳米结构 TUC4C8 和 GTUC 邻域不规则拓扑指数的数学概念和实证研究","authors":"Shahid Zaman, Asad Ullah, Rabia Naseer, Kavi Bahri Rasool","doi":"10.1155/2024/7521699","DOIUrl":null,"url":null,"abstract":"A topological index is a structural descriptor of any molecule/nanostructure that characterizes its topology. In the QSAR and QSPR research, topological indices are employed to predict the physical characteristics associated with bioactivities and chemical reactivity within specific networks. 2D nanostructured materials have many exhibit numerous chemical, mechanical, and physical features. These nanomaterials are exceptionally thin, displaying high chemical functionality and anisotropy. For applications necessitating robust surface interactions on a small scale, 2D materials stand out as the optimal choice due to their expansive surface area and status as the thinnest among all discovered materials. This paper characterized the neighborhood irregular topological invariants of nanostructures <svg height=\"8.98583pt\" style=\"vertical-align:-0.2324905pt\" version=\"1.1\" viewbox=\"-0.0498162 -8.75334 26.432 8.98583\" width=\"26.432pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,8.021,0)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,17.589,0)\"></path></g></svg><sub>4</sub><svg height=\"9.01194pt\" style=\"vertical-align:-0.2455397pt\" version=\"1.1\" viewbox=\"-0.0498162 -8.7664 8.77705 9.01194\" width=\"8.77705pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"></path></g></svg><sub>8</sub>[<i>p</i>, <svg height=\"9.39034pt\" style=\"vertical-align:-3.42943pt\" version=\"1.1\" viewbox=\"-0.0498162 -5.96091 6.50656 9.39034\" width=\"6.50656pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"><use xlink:href=\"#g113-114\"></use></g></svg>] and GTUC[<i>p</i>, <i>q</i>] and derived closed form expressions for them. A comparative analysis is then performed on the basis of these computed indices.","PeriodicalId":54214,"journal":{"name":"Journal of Mathematics","volume":"17 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mathematical Concepts and Empirical Study of Neighborhood Irregular Topological Indices of Nanostructures TUC4C8 and GTUC\",\"authors\":\"Shahid Zaman, Asad Ullah, Rabia Naseer, Kavi Bahri Rasool\",\"doi\":\"10.1155/2024/7521699\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A topological index is a structural descriptor of any molecule/nanostructure that characterizes its topology. In the QSAR and QSPR research, topological indices are employed to predict the physical characteristics associated with bioactivities and chemical reactivity within specific networks. 2D nanostructured materials have many exhibit numerous chemical, mechanical, and physical features. These nanomaterials are exceptionally thin, displaying high chemical functionality and anisotropy. For applications necessitating robust surface interactions on a small scale, 2D materials stand out as the optimal choice due to their expansive surface area and status as the thinnest among all discovered materials. This paper characterized the neighborhood irregular topological invariants of nanostructures <svg height=\\\"8.98583pt\\\" style=\\\"vertical-align:-0.2324905pt\\\" version=\\\"1.1\\\" viewbox=\\\"-0.0498162 -8.75334 26.432 8.98583\\\" width=\\\"26.432pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,0,0)\\\"></path></g><g transform=\\\"matrix(.013,0,0,-0.013,8.021,0)\\\"></path></g><g transform=\\\"matrix(.013,0,0,-0.013,17.589,0)\\\"></path></g></svg><sub>4</sub><svg height=\\\"9.01194pt\\\" style=\\\"vertical-align:-0.2455397pt\\\" version=\\\"1.1\\\" viewbox=\\\"-0.0498162 -8.7664 8.77705 9.01194\\\" width=\\\"8.77705pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,0,0)\\\"></path></g></svg><sub>8</sub>[<i>p</i>, <svg height=\\\"9.39034pt\\\" style=\\\"vertical-align:-3.42943pt\\\" version=\\\"1.1\\\" viewbox=\\\"-0.0498162 -5.96091 6.50656 9.39034\\\" width=\\\"6.50656pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,0,0)\\\"><use xlink:href=\\\"#g113-114\\\"></use></g></svg>] and GTUC[<i>p</i>, <i>q</i>] and derived closed form expressions for them. A comparative analysis is then performed on the basis of these computed indices.\",\"PeriodicalId\":54214,\"journal\":{\"name\":\"Journal of Mathematics\",\"volume\":\"17 1\",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-01-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1155/2024/7521699\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1155/2024/7521699","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

拓扑指数是任何分子/纳米结构的结构描述符,用于表征其拓扑结构。在 QSAR 和 QSPR 研究中,拓扑指数被用来预测特定网络中与生物活性和化学反应性相关的物理特性。二维纳米结构材料具有许多化学、机械和物理特性。这些纳米材料非常薄,具有很高的化学功能性和各向异性。对于需要在小尺度上进行强健表面相互作用的应用,二维材料因其广阔的表面积和在所有已发现材料中最薄的地位而成为最佳选择。本文描述了纳米结构 48[p, ] 和 GTUC[p, q] 的邻域不规则拓扑不变量,并推导出了它们的闭式表达式。然后在这些计算指数的基础上进行了比较分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Mathematical Concepts and Empirical Study of Neighborhood Irregular Topological Indices of Nanostructures TUC4C8 and GTUC
A topological index is a structural descriptor of any molecule/nanostructure that characterizes its topology. In the QSAR and QSPR research, topological indices are employed to predict the physical characteristics associated with bioactivities and chemical reactivity within specific networks. 2D nanostructured materials have many exhibit numerous chemical, mechanical, and physical features. These nanomaterials are exceptionally thin, displaying high chemical functionality and anisotropy. For applications necessitating robust surface interactions on a small scale, 2D materials stand out as the optimal choice due to their expansive surface area and status as the thinnest among all discovered materials. This paper characterized the neighborhood irregular topological invariants of nanostructures 48[p, ] and GTUC[p, q] and derived closed form expressions for them. A comparative analysis is then performed on the basis of these computed indices.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Mathematics
Journal of Mathematics Mathematics-General Mathematics
CiteScore
2.50
自引率
14.30%
发文量
0
期刊介绍: Journal of Mathematics is a broad scope journal that publishes original research articles as well as review articles on all aspects of both pure and applied mathematics. As well as original research, Journal of Mathematics also publishes focused review articles that assess the state of the art, and identify upcoming challenges and promising solutions for the community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信