P. Shanthi, S. Amutha, N. Anbazhagan, G. Uma, Gyanendra Prasad Joshi, Woong Cho
求助PDF
{"title":"路径和循环的分数混合支配数的特征","authors":"P. Shanthi, S. Amutha, N. Anbazhagan, G. Uma, Gyanendra Prasad Joshi, Woong Cho","doi":"10.1155/2024/6619654","DOIUrl":null,"url":null,"abstract":"Let <i>G</i>′ be a simple, connected, and undirected (UD) graph with the vertex set <i>M</i>(<i>G</i>′) and an edge set <i>N</i>(<i>G</i>′). In this article, we define a function <span><svg height=\"12.7178pt\" style=\"vertical-align:-3.42947pt\" version=\"1.1\" viewbox=\"-0.0498162 -9.28833 13.643 12.7178\" width=\"13.643pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,10.679,0)\"></path></g></svg><span></span><svg height=\"12.7178pt\" style=\"vertical-align:-3.42947pt\" version=\"1.1\" viewbox=\"17.2251838 -9.28833 23.344 12.7178\" width=\"23.344pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,17.275,0)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,32.988,0)\"></path></g></svg><span></span><svg height=\"12.7178pt\" style=\"vertical-align:-3.42947pt\" version=\"1.1\" viewbox=\"43.4741838 -9.28833 32.72 12.7178\" width=\"32.72pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,43.524,0)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,58.066,0)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,63.842,0)\"></path></g></svg><span></span><svg height=\"12.7178pt\" style=\"vertical-align:-3.42947pt\" version=\"1.1\" viewbox=\"79.90318380000001 -9.28833 13.689 12.7178\" width=\"13.689pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,79.953,0)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,84.438,0)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,90.678,0)\"></path></g></svg><span></span><svg height=\"12.7178pt\" style=\"vertical-align:-3.42947pt\" version=\"1.1\" viewbox=\"95.7711838 -9.28833 11.065 12.7178\" width=\"11.065pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,95.821,0)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,102.061,0)\"></path></g></svg></span> as a fractional mixed dominating function (FMXDF) if it satisfies <span><svg height=\"15.5493pt\" style=\"vertical-align:-5.86298pt\" version=\"1.1\" viewbox=\"-0.0498162 -9.68632 60.785 15.5493\" width=\"60.785pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"><use xlink:href=\"#g113-103\"></use></g><g transform=\"matrix(.013,0,0,-0.013,8.352,0)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,12.85,0)\"></path></g><g transform=\"matrix(.0091,0,0,-0.0091,20.936,3.132)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,28.787,0)\"><use xlink:href=\"#g113-92\"></use></g><g transform=\"matrix(.013,0,0,-0.013,33.272,0)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,40.539,0)\"><use xlink:href=\"#g113-94\"></use></g><g transform=\"matrix(.013,0,0,-0.013,45.024,0)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,53.154,0)\"></path></g></svg><span></span><svg height=\"15.5493pt\" style=\"vertical-align:-5.86298pt\" version=\"1.1\" viewbox=\"64.3671838 -9.68632 78.992 15.5493\" width=\"78.992pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,64.417,.007)\"></path></g><g transform=\"matrix(.0091,0,0,-0.0091,74.204,3.466)\"></path></g><g transform=\"matrix(.0091,0,0,-0.0091,79.465,3.466)\"></path></g><g transform=\"matrix(.0091,0,0,-0.0091,83.37,3.466)\"></path></g><g transform=\"matrix(.0065,0,0,-0.0065,89.112,5.567)\"></path></g><g transform=\"matrix(.0091,0,0,-0.0091,94.979,3.466)\"></path></g><g transform=\"matrix(.0091,0,0,-0.0091,98.237,3.466)\"></path></g><g transform=\"matrix(.0091,0,0,-0.0091,103.415,3.466)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,107.268,0)\"><use xlink:href=\"#g113-103\"></use></g><g transform=\"matrix(.013,0,0,-0.013,115.621,0)\"><use xlink:href=\"#g113-41\"></use></g><g transform=\"matrix(.013,0,0,-0.013,120.119,0)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,127.648,0)\"><use xlink:href=\"#g113-42\"></use></g><g transform=\"matrix(.013,0,0,-0.013,135.778,0)\"></path></g></svg><span></span><svg height=\"15.5493pt\" style=\"vertical-align:-5.86298pt\" version=\"1.1\" viewbox=\"146.99018379999998 -9.68632 6.656 15.5493\" width=\"6.656pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,147.04,0)\"><use xlink:href=\"#g113-50\"></use></g></svg></span> for all <span><svg height=\"13.7042pt\" style=\"vertical-align:-2.2681pt\" version=\"1.1\" viewbox=\"-0.0498162 -11.4361 17.763 13.7042\" width=\"17.763pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"><use xlink:href=\"#g113-121\"></use></g><g transform=\"matrix(.013,0,0,-0.013,10.899,0)\"></path></g></svg><span></span><svg height=\"13.7042pt\" style=\"vertical-align:-2.2681pt\" version=\"1.1\" viewbox=\"21.3451838 -11.4361 45.027 13.7042\" width=\"45.027pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,21.395,0)\"><use xlink:href=\"#g113-78\"></use></g><g transform=\"matrix(.013,0,0,-0.013,34.202,0)\"><use xlink:href=\"#g113-41\"></use></g><g transform=\"matrix(.013,0,0,-0.013,38.7,0)\"></path></g><g transform=\"matrix(.0091,0,0,-0.0091,47.592,-5.741)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,51.388,0)\"><use xlink:href=\"#g113-42\"></use></g><g transform=\"matrix(.013,0,0,-0.013,58.791,0)\"><use xlink:href=\"#g117-59\"></use></g></svg><span></span><span><svg height=\"13.7042pt\" style=\"vertical-align:-2.2681pt\" version=\"1.1\" viewbox=\"69.27818380000001 -11.4361 32.992 13.7042\" width=\"32.992pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,69.328,0)\"><use xlink:href=\"#g113-79\"></use></g><g transform=\"matrix(.013,0,0,-0.013,80.238,0)\"><use xlink:href=\"#g113-41\"></use></g><g transform=\"matrix(.013,0,0,-0.013,84.736,0)\"><use xlink:href=\"#g113-72\"></use></g><g transform=\"matrix(.0091,0,0,-0.0091,93.628,-5.741)\"><use xlink:href=\"#g50-31\"></use></g><g transform=\"matrix(.013,0,0,-0.013,97.424,0)\"><use xlink:href=\"#g113-42\"></use></g></svg>,</span></span> where <svg height=\"12.5794pt\" style=\"vertical-align:-3.29107pt\" version=\"1.1\" viewbox=\"-0.0498162 -9.28833 32.3649 12.5794\" width=\"32.3649pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"><use xlink:href=\"#g113-83\"></use></g><g transform=\"matrix(.0091,0,0,-0.0091,8.086,3.132)\"><use xlink:href=\"#g50-110\"></use></g><g transform=\"matrix(.013,0,0,-0.013,15.937,0)\"><use xlink:href=\"#g113-92\"></use></g><g transform=\"matrix(.013,0,0,-0.013,20.422,0)\"><use xlink:href=\"#g113-121\"></use></g><g transform=\"matrix(.013,0,0,-0.013,27.689,0)\"><use xlink:href=\"#g113-94\"></use></g></svg> indicates the closed mixed neighbourhood of <span><svg height=\"6.1673pt\" style=\"vertical-align:-0.2063904pt\" version=\"1.1\" viewbox=\"-0.0498162 -5.96091 7.39387 6.1673\" width=\"7.39387pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"><use xlink:href=\"#g113-121\"></use></g></svg>,</span> that is the set of all <span><svg height=\"14.8655pt\" style=\"vertical-align:-3.4294pt\" version=\"1.1\" viewbox=\"-0.0498162 -11.4361 18.025 14.8655\" width=\"18.025pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"><use xlink:href=\"#g113-122\"></use></g><g transform=\"matrix(.013,0,0,-0.013,11.161,0)\"><use xlink:href=\"#g117-173\"></use></g></svg><span></span><svg height=\"14.8655pt\" style=\"vertical-align:-3.4294pt\" version=\"1.1\" viewbox=\"21.6071838 -11.4361 45.027 14.8655\" width=\"45.027pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,21.657,0)\"><use xlink:href=\"#g113-78\"></use></g><g transform=\"matrix(.013,0,0,-0.013,34.464,0)\"><use xlink:href=\"#g113-41\"></use></g><g transform=\"matrix(.013,0,0,-0.013,38.962,0)\"><use xlink:href=\"#g113-72\"></use></g><g transform=\"matrix(.0091,0,0,-0.0091,47.854,-5.741)\"><use xlink:href=\"#g50-31\"></use></g><g transform=\"matrix(.013,0,0,-0.013,51.65,0)\"><use xlink:href=\"#g113-42\"></use></g><g transform=\"matrix(.013,0,0,-0.013,59.053,0)\"><use xlink:href=\"#g117-59\"></use></g></svg><span></span><svg height=\"14.8655pt\" style=\"vertical-align:-3.4294pt\" version=\"1.1\" viewbox=\"69.54018380000001 -11.4361 32.991 14.8655\" width=\"32.991pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,69.59,0)\"><use xlink:href=\"#g113-79\"></use></g><g transform=\"matrix(.013,0,0,-0.013,80.5,0)\"><use xlink:href=\"#g113-41\"></use></g><g transform=\"matrix(.013,0,0,-0.013,84.998,0)\"><use xlink:href=\"#g113-72\"></use></g><g transform=\"matrix(.0091,0,0,-0.0091,93.89,-5.741)\"><use xlink:href=\"#g50-31\"></use></g><g transform=\"matrix(.013,0,0,-0.013,97.686,0)\"><use xlink:href=\"#g113-42\"></use></g></svg></span> such that <svg height=\"9.39034pt\" style=\"vertical-align:-3.42943pt\" version=\"1.1\" viewbox=\"-0.0498162 -5.96091 7.65486 9.39034\" width=\"7.65486pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"><use xlink:href=\"#g113-122\"></use></g></svg> is adjacent to <svg height=\"6.1673pt\" style=\"vertical-align:-0.2063904pt\" version=\"1.1\" viewbox=\"-0.0498162 -5.96091 7.39387 6.1673\" width=\"7.39387pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"><use xlink:href=\"#g113-121\"></use></g></svg> and <svg height=\"9.39034pt\" style=\"vertical-align:-3.42943pt\" version=\"1.1\" viewbox=\"-0.0498162 -5.96091 7.65486 9.39034\" width=\"7.65486pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"><use xlink:href=\"#g113-122\"></use></g></svg> is incident with <svg height=\"6.1673pt\" style=\"vertical-align:-0.2063904pt\" version=\"1.1\" viewbox=\"-0.0498162 -5.96091 7.39387 6.1673\" width=\"7.39387pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"><use xlink:href=\"#g113-121\"></use></g></svg> and also <svg height=\"6.1673pt\" style=\"vertical-align:-0.2063904pt\" version=\"1.1\" viewbox=\"-0.0498162 -5.96091 7.39387 6.1673\" width=\"7.39387pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"><use xlink:href=\"#g113-121\"></use></g></svg> itself. Here, <span><svg height=\"13.6586pt\" style=\"vertical-align:-3.97228pt\" version=\"1.1\" viewbox=\"-0.0498162 -9.68632 36.321 13.6586\" width=\"36.321pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,7.71,0)\"><use xlink:href=\"#g113-41\"></use></g><g transform=\"matrix(.013,0,0,-0.013,12.208,0)\"><use xlink:href=\"#g113-103\"></use></g><g transform=\"matrix(.013,0,0,-0.013,20.56,0)\"><use xlink:href=\"#g113-42\"></use></g><g transform=\"matrix(.013,0,0,-0.013,28.69,0)\"><use xlink:href=\"#g117-34\"></use></g></svg><span></span><svg height=\"13.6586pt\" style=\"vertical-align:-3.97228pt\" version=\"1.1\" viewbox=\"39.9031838 -9.68632 68.138 13.6586\" width=\"68.138pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,39.953,.007)\"><use xlink:href=\"#g119-65\"></use></g><g transform=\"matrix(.0091,0,0,-0.0091,49.74,3.466)\"><use xlink:href=\"#g50-121\"></use></g><g transform=\"matrix(.0091,0,0,-0.0091,54.918,3.466)\"></path></g><g transform=\"matrix(.0091,0,0,-0.0091,60.187,3.466)\"></path></g><g transform=\"matrix(.0091,0,0,-0.0091,69.243,3.466)\"></path></g><g transform=\"matrix(.0091,0,0,-0.0091,74.803,3.466)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,83.175,0)\"><use xlink:href=\"#g113-103\"></use></g><g transform=\"matrix(.013,0,0,-0.013,91.527,0)\"><use xlink:href=\"#g113-41\"></use></g><g transform=\"matrix(.013,0,0,-0.013,96.025,0)\"><use xlink:href=\"#g113-121\"></use></g><g transform=\"matrix(.013,0,0,-0.013,103.293,0)\"><use xlink:href=\"#g113-42\"></use></g></svg></span> is the poundage (or weight) of <i>f</i>. The fractional mixed domination number (FMXDN) is denoted by <svg height=\"17.6175pt\" style=\"vertical-align:-6.1814pt\" version=\"1.1\" viewbox=\"-0.0498162 -11.4361 40.6061 17.6175\" width=\"40.6061pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"></path></g><g transform=\"matrix(.0091,0,0,-0.0091,6.516,-5.741)\"></path></g><g transform=\"matrix(.0091,0,0,-0.0091,5.668,3.784)\"></path></g><g transform=\"matrix(.0091,0,0,-0.0091,10.866,3.784)\"><use xlink:href=\"#g50-110\"></use></g><g transform=\"matrix(.013,0,0,-0.013,18.735,0)\"><use xlink:href=\"#g113-41\"></use></g><g transform=\"matrix(.013,0,0,-0.013,23.233,0)\"><use xlink:href=\"#g113-72\"></use></g><g transform=\"matrix(.0091,0,0,-0.0091,32.125,-5.741)\"><use xlink:href=\"#g50-31\"></use></g><g transform=\"matrix(.013,0,0,-0.013,35.92,0)\"><use xlink:href=\"#g113-42\"></use></g></svg> and is designated as the lowest poundage among all FMXDFs of <span><svg height=\"11.6425pt\" style=\"vertical-align:-0.2063999pt\" version=\"1.1\" viewbox=\"-0.0498162 -11.4361 12.8205 11.6425\" width=\"12.8205pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"><use xlink:href=\"#g113-72\"></use></g><g transform=\"matrix(.0091,0,0,-0.0091,8.892,-5.741)\"><use xlink:href=\"#g50-31\"></use></g></svg>.</span> We compute the FMXDN of some common graphs such as paths, cycles, and star graphs, the middle graph of paths and cycles, and shadow graphs. Furthermore, we compute upper bounds for the sum of the two fractional dominating parameters, resulting in the inequality <span><svg height=\"17.6175pt\" style=\"vertical-align:-6.1814pt\" version=\"1.1\" viewbox=\"-0.0498162 -11.4361 42.185 17.6175\" width=\"42.185pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"><use xlink:href=\"#g113-225\"></use></g><g transform=\"matrix(.0091,0,0,-0.0091,6.516,-5.741)\"><use xlink:href=\"#g50-31\"></use></g><g transform=\"matrix(.0091,0,0,-0.0091,5.668,3.784)\"><use xlink:href=\"#g50-103\"></use></g><g transform=\"matrix(.0065,0,0,-0.0065,10.391,5.885)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,14.628,0)\"><use xlink:href=\"#g113-41\"></use></g><g transform=\"matrix(.013,0,0,-0.013,19.126,0)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,27.15,0)\"><use xlink:href=\"#g113-42\"></use></g><g transform=\"matrix(.013,0,0,-0.013,34.554,0)\"></path></g></svg><span></span><svg height=\"17.6175pt\" style=\"vertical-align:-6.1814pt\" version=\"1.1\" viewbox=\"45.0401838 -11.4361 47.018 17.6175\" width=\"47.018pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,45.09,0)\"><use xlink:href=\"#g113-225\"></use></g><g transform=\"matrix(.0091,0,0,-0.0091,51.606,-5.741)\"><use xlink:href=\"#g50-43\"></use></g><g transform=\"matrix(.0091,0,0,-0.0091,50.758,3.784)\"><use xlink:href=\"#g50-103\"></use></g><g transform=\"matrix(.0091,0,0,-0.0091,55.956,3.784)\"><use xlink:href=\"#g50-110\"></use></g><g transform=\"matrix(.013,0,0,-0.013,63.825,0)\"><use xlink:href=\"#g113-41\"></use></g><g transform=\"matrix(.013,0,0,-0.013,68.323,0)\"><use xlink:href=\"#g113-148\"></use></g><g transform=\"matrix(.013,0,0,-0.013,76.347,0)\"><use xlink:href=\"#g113-42\"></use></g><g transform=\"matrix(.013,0,0,-0.013,84.477,0)\"></path></g></svg><span></span><svg height=\"17.6175pt\" style=\"vertical-align:-6.1814pt\" version=\"1.1\" viewbox=\"95.6901838 -11.4361 16.024 17.6175\" width=\"16.024pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,95.74,0)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,104.133,0)\"><use xlink:href=\"#g117-36\"></use></g></svg><span></span><span><svg height=\"17.6175pt\" style=\"vertical-align:-6.1814pt\" version=\"1.1\" viewbox=\"114.6201838 -11.4361 76.998 17.6175\" width=\"76.998pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,114.67,0)\"><use xlink:href=\"#g113-113\"></use></g><g transform=\"matrix(.013,0,0,-0.013,125.285,0)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,135.822,0)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,140.645,0)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,146.352,0)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,153.281,0)\"><use xlink:href=\"#g113-41\"></use></g><g transform=\"matrix(.013,0,0,-0.013,157.779,0)\"><use xlink:href=\"#g113-148\"></use></g><g transform=\"matrix(.013,0,0,-0.013,165.803,0)\"><use xlink:href=\"#g113-42\"></use></g><g transform=\"matrix(.013,0,0,-0.013,173.207,0)\"><use xlink:href=\"#g117-33\"></use></g><g transform=\"matrix(.013,0,0,-0.013,183.743,0)\"></path></g></svg>,</span></span> where <svg height=\"17.6175pt\" style=\"vertical-align:-6.1814pt\" version=\"1.1\" viewbox=\"-0.0498162 -11.4361 14.7488 17.6175\" width=\"14.7488pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"><use xlink:href=\"#g113-225\"></use></g><g transform=\"matrix(.0091,0,0,-0.0091,6.516,-5.741)\"><use xlink:href=\"#g50-31\"></use></g><g transform=\"matrix(.0091,0,0,-0.0091,5.668,3.784)\"><use xlink:href=\"#g50-103\"></use></g><g transform=\"matrix(.0065,0,0,-0.0065,10.391,5.885)\"><use xlink:href=\"#g176-50\"></use></g></svg> and <svg height=\"16.284pt\" style=\"vertical-align:-6.1815pt\" version=\"1.1\" viewbox=\"-0.0498162 -10.1025 18.8555 16.284\" width=\"18.8555pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"><use xlink:href=\"#g113-225\"></use></g><g transform=\"matrix(.0091,0,0,-0.0091,6.516,-5.741)\"><use xlink:href=\"#g50-43\"></use></g><g transform=\"matrix(.0091,0,0,-0.0091,5.668,3.784)\"><use xlink:href=\"#g50-103\"></use></g><g transform=\"matrix(.0091,0,0,-0.0091,10.866,3.784)\"><use xlink:href=\"#g50-110\"></use></g></svg> are the fractional edge domination number and FMXDN, respectively. Finally, we compare <svg height=\"16.284pt\" style=\"vertical-align:-6.1815pt\" version=\"1.1\" viewbox=\"-0.0498162 -10.1025 18.8555 16.284\" width=\"18.8555pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"><use xlink:href=\"#g113-225\"></use></g><g transform=\"matrix(.0091,0,0,-0.0091,6.516,-5.741)\"><use xlink:href=\"#g50-43\"></use></g><g transform=\"matrix(.0091,0,0,-0.0091,5.668,3.784)\"><use xlink:href=\"#g50-103\"></use></g><g transform=\"matrix(.0091,0,0,-0.0091,10.866,3.784)\"><use xlink:href=\"#g50-110\"></use></g></svg> to other resolvability-related parameters such as metric and fault-tolerant metric dimensions on some families of graphs.","PeriodicalId":54214,"journal":{"name":"Journal of Mathematics","volume":"1 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Characterization of Fractional Mixed Domination Number of Paths and Cycles\",\"authors\":\"P. Shanthi, S. Amutha, N. Anbazhagan, G. Uma, Gyanendra Prasad Joshi, Woong Cho\",\"doi\":\"10.1155/2024/6619654\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let <i>G</i>′ be a simple, connected, and undirected (UD) graph with the vertex set <i>M</i>(<i>G</i>′) and an edge set <i>N</i>(<i>G</i>′). In this article, we define a function <span><svg height=\\\"12.7178pt\\\" style=\\\"vertical-align:-3.42947pt\\\" version=\\\"1.1\\\" viewbox=\\\"-0.0498162 -9.28833 13.643 12.7178\\\" width=\\\"13.643pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,0,0)\\\"></path></g><g transform=\\\"matrix(.013,0,0,-0.013,10.679,0)\\\"></path></g></svg><span></span><svg height=\\\"12.7178pt\\\" style=\\\"vertical-align:-3.42947pt\\\" version=\\\"1.1\\\" viewbox=\\\"17.2251838 -9.28833 23.344 12.7178\\\" width=\\\"23.344pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,17.275,0)\\\"></path></g><g transform=\\\"matrix(.013,0,0,-0.013,32.988,0)\\\"></path></g></svg><span></span><svg height=\\\"12.7178pt\\\" style=\\\"vertical-align:-3.42947pt\\\" version=\\\"1.1\\\" viewbox=\\\"43.4741838 -9.28833 32.72 12.7178\\\" width=\\\"32.72pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,43.524,0)\\\"></path></g><g transform=\\\"matrix(.013,0,0,-0.013,58.066,0)\\\"></path></g><g transform=\\\"matrix(.013,0,0,-0.013,63.842,0)\\\"></path></g></svg><span></span><svg height=\\\"12.7178pt\\\" style=\\\"vertical-align:-3.42947pt\\\" version=\\\"1.1\\\" viewbox=\\\"79.90318380000001 -9.28833 13.689 12.7178\\\" width=\\\"13.689pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,79.953,0)\\\"></path></g><g transform=\\\"matrix(.013,0,0,-0.013,84.438,0)\\\"></path></g><g transform=\\\"matrix(.013,0,0,-0.013,90.678,0)\\\"></path></g></svg><span></span><svg height=\\\"12.7178pt\\\" style=\\\"vertical-align:-3.42947pt\\\" version=\\\"1.1\\\" viewbox=\\\"95.7711838 -9.28833 11.065 12.7178\\\" width=\\\"11.065pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,95.821,0)\\\"></path></g><g transform=\\\"matrix(.013,0,0,-0.013,102.061,0)\\\"></path></g></svg></span> as a fractional mixed dominating function (FMXDF) if it satisfies <span><svg height=\\\"15.5493pt\\\" style=\\\"vertical-align:-5.86298pt\\\" version=\\\"1.1\\\" viewbox=\\\"-0.0498162 -9.68632 60.785 15.5493\\\" width=\\\"60.785pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,0,0)\\\"><use xlink:href=\\\"#g113-103\\\"></use></g><g transform=\\\"matrix(.013,0,0,-0.013,8.352,0)\\\"></path></g><g transform=\\\"matrix(.013,0,0,-0.013,12.85,0)\\\"></path></g><g transform=\\\"matrix(.0091,0,0,-0.0091,20.936,3.132)\\\"></path></g><g transform=\\\"matrix(.013,0,0,-0.013,28.787,0)\\\"><use xlink:href=\\\"#g113-92\\\"></use></g><g transform=\\\"matrix(.013,0,0,-0.013,33.272,0)\\\"></path></g><g transform=\\\"matrix(.013,0,0,-0.013,40.539,0)\\\"><use xlink:href=\\\"#g113-94\\\"></use></g><g transform=\\\"matrix(.013,0,0,-0.013,45.024,0)\\\"></path></g><g transform=\\\"matrix(.013,0,0,-0.013,53.154,0)\\\"></path></g></svg><span></span><svg height=\\\"15.5493pt\\\" style=\\\"vertical-align:-5.86298pt\\\" version=\\\"1.1\\\" viewbox=\\\"64.3671838 -9.68632 78.992 15.5493\\\" width=\\\"78.992pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,64.417,.007)\\\"></path></g><g transform=\\\"matrix(.0091,0,0,-0.0091,74.204,3.466)\\\"></path></g><g transform=\\\"matrix(.0091,0,0,-0.0091,79.465,3.466)\\\"></path></g><g transform=\\\"matrix(.0091,0,0,-0.0091,83.37,3.466)\\\"></path></g><g transform=\\\"matrix(.0065,0,0,-0.0065,89.112,5.567)\\\"></path></g><g transform=\\\"matrix(.0091,0,0,-0.0091,94.979,3.466)\\\"></path></g><g transform=\\\"matrix(.0091,0,0,-0.0091,98.237,3.466)\\\"></path></g><g transform=\\\"matrix(.0091,0,0,-0.0091,103.415,3.466)\\\"></path></g><g transform=\\\"matrix(.013,0,0,-0.013,107.268,0)\\\"><use xlink:href=\\\"#g113-103\\\"></use></g><g transform=\\\"matrix(.013,0,0,-0.013,115.621,0)\\\"><use xlink:href=\\\"#g113-41\\\"></use></g><g transform=\\\"matrix(.013,0,0,-0.013,120.119,0)\\\"></path></g><g transform=\\\"matrix(.013,0,0,-0.013,127.648,0)\\\"><use xlink:href=\\\"#g113-42\\\"></use></g><g transform=\\\"matrix(.013,0,0,-0.013,135.778,0)\\\"></path></g></svg><span></span><svg height=\\\"15.5493pt\\\" style=\\\"vertical-align:-5.86298pt\\\" version=\\\"1.1\\\" viewbox=\\\"146.99018379999998 -9.68632 6.656 15.5493\\\" width=\\\"6.656pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,147.04,0)\\\"><use xlink:href=\\\"#g113-50\\\"></use></g></svg></span> for all <span><svg height=\\\"13.7042pt\\\" style=\\\"vertical-align:-2.2681pt\\\" version=\\\"1.1\\\" viewbox=\\\"-0.0498162 -11.4361 17.763 13.7042\\\" width=\\\"17.763pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,0,0)\\\"><use xlink:href=\\\"#g113-121\\\"></use></g><g transform=\\\"matrix(.013,0,0,-0.013,10.899,0)\\\"></path></g></svg><span></span><svg height=\\\"13.7042pt\\\" style=\\\"vertical-align:-2.2681pt\\\" version=\\\"1.1\\\" viewbox=\\\"21.3451838 -11.4361 45.027 13.7042\\\" width=\\\"45.027pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,21.395,0)\\\"><use xlink:href=\\\"#g113-78\\\"></use></g><g transform=\\\"matrix(.013,0,0,-0.013,34.202,0)\\\"><use xlink:href=\\\"#g113-41\\\"></use></g><g transform=\\\"matrix(.013,0,0,-0.013,38.7,0)\\\"></path></g><g transform=\\\"matrix(.0091,0,0,-0.0091,47.592,-5.741)\\\"></path></g><g transform=\\\"matrix(.013,0,0,-0.013,51.388,0)\\\"><use xlink:href=\\\"#g113-42\\\"></use></g><g transform=\\\"matrix(.013,0,0,-0.013,58.791,0)\\\"><use xlink:href=\\\"#g117-59\\\"></use></g></svg><span></span><span><svg height=\\\"13.7042pt\\\" style=\\\"vertical-align:-2.2681pt\\\" version=\\\"1.1\\\" viewbox=\\\"69.27818380000001 -11.4361 32.992 13.7042\\\" width=\\\"32.992pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,69.328,0)\\\"><use xlink:href=\\\"#g113-79\\\"></use></g><g transform=\\\"matrix(.013,0,0,-0.013,80.238,0)\\\"><use xlink:href=\\\"#g113-41\\\"></use></g><g transform=\\\"matrix(.013,0,0,-0.013,84.736,0)\\\"><use xlink:href=\\\"#g113-72\\\"></use></g><g transform=\\\"matrix(.0091,0,0,-0.0091,93.628,-5.741)\\\"><use xlink:href=\\\"#g50-31\\\"></use></g><g transform=\\\"matrix(.013,0,0,-0.013,97.424,0)\\\"><use xlink:href=\\\"#g113-42\\\"></use></g></svg>,</span></span> where <svg height=\\\"12.5794pt\\\" style=\\\"vertical-align:-3.29107pt\\\" version=\\\"1.1\\\" viewbox=\\\"-0.0498162 -9.28833 32.3649 12.5794\\\" width=\\\"32.3649pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,0,0)\\\"><use xlink:href=\\\"#g113-83\\\"></use></g><g transform=\\\"matrix(.0091,0,0,-0.0091,8.086,3.132)\\\"><use xlink:href=\\\"#g50-110\\\"></use></g><g transform=\\\"matrix(.013,0,0,-0.013,15.937,0)\\\"><use xlink:href=\\\"#g113-92\\\"></use></g><g transform=\\\"matrix(.013,0,0,-0.013,20.422,0)\\\"><use xlink:href=\\\"#g113-121\\\"></use></g><g transform=\\\"matrix(.013,0,0,-0.013,27.689,0)\\\"><use xlink:href=\\\"#g113-94\\\"></use></g></svg> indicates the closed mixed neighbourhood of <span><svg height=\\\"6.1673pt\\\" style=\\\"vertical-align:-0.2063904pt\\\" version=\\\"1.1\\\" viewbox=\\\"-0.0498162 -5.96091 7.39387 6.1673\\\" width=\\\"7.39387pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,0,0)\\\"><use xlink:href=\\\"#g113-121\\\"></use></g></svg>,</span> that is the set of all <span><svg height=\\\"14.8655pt\\\" style=\\\"vertical-align:-3.4294pt\\\" version=\\\"1.1\\\" viewbox=\\\"-0.0498162 -11.4361 18.025 14.8655\\\" width=\\\"18.025pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,0,0)\\\"><use xlink:href=\\\"#g113-122\\\"></use></g><g transform=\\\"matrix(.013,0,0,-0.013,11.161,0)\\\"><use xlink:href=\\\"#g117-173\\\"></use></g></svg><span></span><svg height=\\\"14.8655pt\\\" style=\\\"vertical-align:-3.4294pt\\\" version=\\\"1.1\\\" viewbox=\\\"21.6071838 -11.4361 45.027 14.8655\\\" width=\\\"45.027pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,21.657,0)\\\"><use xlink:href=\\\"#g113-78\\\"></use></g><g transform=\\\"matrix(.013,0,0,-0.013,34.464,0)\\\"><use xlink:href=\\\"#g113-41\\\"></use></g><g transform=\\\"matrix(.013,0,0,-0.013,38.962,0)\\\"><use xlink:href=\\\"#g113-72\\\"></use></g><g transform=\\\"matrix(.0091,0,0,-0.0091,47.854,-5.741)\\\"><use xlink:href=\\\"#g50-31\\\"></use></g><g transform=\\\"matrix(.013,0,0,-0.013,51.65,0)\\\"><use xlink:href=\\\"#g113-42\\\"></use></g><g transform=\\\"matrix(.013,0,0,-0.013,59.053,0)\\\"><use xlink:href=\\\"#g117-59\\\"></use></g></svg><span></span><svg height=\\\"14.8655pt\\\" style=\\\"vertical-align:-3.4294pt\\\" version=\\\"1.1\\\" viewbox=\\\"69.54018380000001 -11.4361 32.991 14.8655\\\" width=\\\"32.991pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,69.59,0)\\\"><use xlink:href=\\\"#g113-79\\\"></use></g><g transform=\\\"matrix(.013,0,0,-0.013,80.5,0)\\\"><use xlink:href=\\\"#g113-41\\\"></use></g><g transform=\\\"matrix(.013,0,0,-0.013,84.998,0)\\\"><use xlink:href=\\\"#g113-72\\\"></use></g><g transform=\\\"matrix(.0091,0,0,-0.0091,93.89,-5.741)\\\"><use xlink:href=\\\"#g50-31\\\"></use></g><g transform=\\\"matrix(.013,0,0,-0.013,97.686,0)\\\"><use xlink:href=\\\"#g113-42\\\"></use></g></svg></span> such that <svg height=\\\"9.39034pt\\\" style=\\\"vertical-align:-3.42943pt\\\" version=\\\"1.1\\\" viewbox=\\\"-0.0498162 -5.96091 7.65486 9.39034\\\" width=\\\"7.65486pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,0,0)\\\"><use xlink:href=\\\"#g113-122\\\"></use></g></svg> is adjacent to <svg height=\\\"6.1673pt\\\" style=\\\"vertical-align:-0.2063904pt\\\" version=\\\"1.1\\\" viewbox=\\\"-0.0498162 -5.96091 7.39387 6.1673\\\" width=\\\"7.39387pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,0,0)\\\"><use xlink:href=\\\"#g113-121\\\"></use></g></svg> and <svg height=\\\"9.39034pt\\\" style=\\\"vertical-align:-3.42943pt\\\" version=\\\"1.1\\\" viewbox=\\\"-0.0498162 -5.96091 7.65486 9.39034\\\" width=\\\"7.65486pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,0,0)\\\"><use xlink:href=\\\"#g113-122\\\"></use></g></svg> is incident with <svg height=\\\"6.1673pt\\\" style=\\\"vertical-align:-0.2063904pt\\\" version=\\\"1.1\\\" viewbox=\\\"-0.0498162 -5.96091 7.39387 6.1673\\\" width=\\\"7.39387pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,0,0)\\\"><use xlink:href=\\\"#g113-121\\\"></use></g></svg> and also <svg height=\\\"6.1673pt\\\" style=\\\"vertical-align:-0.2063904pt\\\" version=\\\"1.1\\\" viewbox=\\\"-0.0498162 -5.96091 7.39387 6.1673\\\" width=\\\"7.39387pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,0,0)\\\"><use xlink:href=\\\"#g113-121\\\"></use></g></svg> itself. Here, <span><svg height=\\\"13.6586pt\\\" style=\\\"vertical-align:-3.97228pt\\\" version=\\\"1.1\\\" viewbox=\\\"-0.0498162 -9.68632 36.321 13.6586\\\" width=\\\"36.321pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,0,0)\\\"></path></g><g transform=\\\"matrix(.013,0,0,-0.013,7.71,0)\\\"><use xlink:href=\\\"#g113-41\\\"></use></g><g transform=\\\"matrix(.013,0,0,-0.013,12.208,0)\\\"><use xlink:href=\\\"#g113-103\\\"></use></g><g transform=\\\"matrix(.013,0,0,-0.013,20.56,0)\\\"><use xlink:href=\\\"#g113-42\\\"></use></g><g transform=\\\"matrix(.013,0,0,-0.013,28.69,0)\\\"><use xlink:href=\\\"#g117-34\\\"></use></g></svg><span></span><svg height=\\\"13.6586pt\\\" style=\\\"vertical-align:-3.97228pt\\\" version=\\\"1.1\\\" viewbox=\\\"39.9031838 -9.68632 68.138 13.6586\\\" width=\\\"68.138pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,39.953,.007)\\\"><use xlink:href=\\\"#g119-65\\\"></use></g><g transform=\\\"matrix(.0091,0,0,-0.0091,49.74,3.466)\\\"><use xlink:href=\\\"#g50-121\\\"></use></g><g transform=\\\"matrix(.0091,0,0,-0.0091,54.918,3.466)\\\"></path></g><g transform=\\\"matrix(.0091,0,0,-0.0091,60.187,3.466)\\\"></path></g><g transform=\\\"matrix(.0091,0,0,-0.0091,69.243,3.466)\\\"></path></g><g transform=\\\"matrix(.0091,0,0,-0.0091,74.803,3.466)\\\"></path></g><g transform=\\\"matrix(.013,0,0,-0.013,83.175,0)\\\"><use xlink:href=\\\"#g113-103\\\"></use></g><g transform=\\\"matrix(.013,0,0,-0.013,91.527,0)\\\"><use xlink:href=\\\"#g113-41\\\"></use></g><g transform=\\\"matrix(.013,0,0,-0.013,96.025,0)\\\"><use xlink:href=\\\"#g113-121\\\"></use></g><g transform=\\\"matrix(.013,0,0,-0.013,103.293,0)\\\"><use xlink:href=\\\"#g113-42\\\"></use></g></svg></span> is the poundage (or weight) of <i>f</i>. The fractional mixed domination number (FMXDN) is denoted by <svg height=\\\"17.6175pt\\\" style=\\\"vertical-align:-6.1814pt\\\" version=\\\"1.1\\\" viewbox=\\\"-0.0498162 -11.4361 40.6061 17.6175\\\" width=\\\"40.6061pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,0,0)\\\"></path></g><g transform=\\\"matrix(.0091,0,0,-0.0091,6.516,-5.741)\\\"></path></g><g transform=\\\"matrix(.0091,0,0,-0.0091,5.668,3.784)\\\"></path></g><g transform=\\\"matrix(.0091,0,0,-0.0091,10.866,3.784)\\\"><use xlink:href=\\\"#g50-110\\\"></use></g><g transform=\\\"matrix(.013,0,0,-0.013,18.735,0)\\\"><use xlink:href=\\\"#g113-41\\\"></use></g><g transform=\\\"matrix(.013,0,0,-0.013,23.233,0)\\\"><use xlink:href=\\\"#g113-72\\\"></use></g><g transform=\\\"matrix(.0091,0,0,-0.0091,32.125,-5.741)\\\"><use xlink:href=\\\"#g50-31\\\"></use></g><g transform=\\\"matrix(.013,0,0,-0.013,35.92,0)\\\"><use xlink:href=\\\"#g113-42\\\"></use></g></svg> and is designated as the lowest poundage among all FMXDFs of <span><svg height=\\\"11.6425pt\\\" style=\\\"vertical-align:-0.2063999pt\\\" version=\\\"1.1\\\" viewbox=\\\"-0.0498162 -11.4361 12.8205 11.6425\\\" width=\\\"12.8205pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,0,0)\\\"><use xlink:href=\\\"#g113-72\\\"></use></g><g transform=\\\"matrix(.0091,0,0,-0.0091,8.892,-5.741)\\\"><use xlink:href=\\\"#g50-31\\\"></use></g></svg>.</span> We compute the FMXDN of some common graphs such as paths, cycles, and star graphs, the middle graph of paths and cycles, and shadow graphs. Furthermore, we compute upper bounds for the sum of the two fractional dominating parameters, resulting in the inequality <span><svg height=\\\"17.6175pt\\\" style=\\\"vertical-align:-6.1814pt\\\" version=\\\"1.1\\\" viewbox=\\\"-0.0498162 -11.4361 42.185 17.6175\\\" width=\\\"42.185pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,0,0)\\\"><use xlink:href=\\\"#g113-225\\\"></use></g><g transform=\\\"matrix(.0091,0,0,-0.0091,6.516,-5.741)\\\"><use xlink:href=\\\"#g50-31\\\"></use></g><g transform=\\\"matrix(.0091,0,0,-0.0091,5.668,3.784)\\\"><use xlink:href=\\\"#g50-103\\\"></use></g><g transform=\\\"matrix(.0065,0,0,-0.0065,10.391,5.885)\\\"></path></g><g transform=\\\"matrix(.013,0,0,-0.013,14.628,0)\\\"><use xlink:href=\\\"#g113-41\\\"></use></g><g transform=\\\"matrix(.013,0,0,-0.013,19.126,0)\\\"></path></g><g transform=\\\"matrix(.013,0,0,-0.013,27.15,0)\\\"><use xlink:href=\\\"#g113-42\\\"></use></g><g transform=\\\"matrix(.013,0,0,-0.013,34.554,0)\\\"></path></g></svg><span></span><svg height=\\\"17.6175pt\\\" style=\\\"vertical-align:-6.1814pt\\\" version=\\\"1.1\\\" viewbox=\\\"45.0401838 -11.4361 47.018 17.6175\\\" width=\\\"47.018pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,45.09,0)\\\"><use xlink:href=\\\"#g113-225\\\"></use></g><g transform=\\\"matrix(.0091,0,0,-0.0091,51.606,-5.741)\\\"><use xlink:href=\\\"#g50-43\\\"></use></g><g transform=\\\"matrix(.0091,0,0,-0.0091,50.758,3.784)\\\"><use xlink:href=\\\"#g50-103\\\"></use></g><g transform=\\\"matrix(.0091,0,0,-0.0091,55.956,3.784)\\\"><use xlink:href=\\\"#g50-110\\\"></use></g><g transform=\\\"matrix(.013,0,0,-0.013,63.825,0)\\\"><use xlink:href=\\\"#g113-41\\\"></use></g><g transform=\\\"matrix(.013,0,0,-0.013,68.323,0)\\\"><use xlink:href=\\\"#g113-148\\\"></use></g><g transform=\\\"matrix(.013,0,0,-0.013,76.347,0)\\\"><use xlink:href=\\\"#g113-42\\\"></use></g><g transform=\\\"matrix(.013,0,0,-0.013,84.477,0)\\\"></path></g></svg><span></span><svg height=\\\"17.6175pt\\\" style=\\\"vertical-align:-6.1814pt\\\" version=\\\"1.1\\\" viewbox=\\\"95.6901838 -11.4361 16.024 17.6175\\\" width=\\\"16.024pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,95.74,0)\\\"></path></g><g transform=\\\"matrix(.013,0,0,-0.013,104.133,0)\\\"><use xlink:href=\\\"#g117-36\\\"></use></g></svg><span></span><span><svg height=\\\"17.6175pt\\\" style=\\\"vertical-align:-6.1814pt\\\" version=\\\"1.1\\\" viewbox=\\\"114.6201838 -11.4361 76.998 17.6175\\\" width=\\\"76.998pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,114.67,0)\\\"><use xlink:href=\\\"#g113-113\\\"></use></g><g transform=\\\"matrix(.013,0,0,-0.013,125.285,0)\\\"></path></g><g transform=\\\"matrix(.013,0,0,-0.013,135.822,0)\\\"></path></g><g transform=\\\"matrix(.013,0,0,-0.013,140.645,0)\\\"></path></g><g transform=\\\"matrix(.013,0,0,-0.013,146.352,0)\\\"></path></g><g transform=\\\"matrix(.013,0,0,-0.013,153.281,0)\\\"><use xlink:href=\\\"#g113-41\\\"></use></g><g transform=\\\"matrix(.013,0,0,-0.013,157.779,0)\\\"><use xlink:href=\\\"#g113-148\\\"></use></g><g transform=\\\"matrix(.013,0,0,-0.013,165.803,0)\\\"><use xlink:href=\\\"#g113-42\\\"></use></g><g transform=\\\"matrix(.013,0,0,-0.013,173.207,0)\\\"><use xlink:href=\\\"#g117-33\\\"></use></g><g transform=\\\"matrix(.013,0,0,-0.013,183.743,0)\\\"></path></g></svg>,</span></span> where <svg height=\\\"17.6175pt\\\" style=\\\"vertical-align:-6.1814pt\\\" version=\\\"1.1\\\" viewbox=\\\"-0.0498162 -11.4361 14.7488 17.6175\\\" width=\\\"14.7488pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,0,0)\\\"><use xlink:href=\\\"#g113-225\\\"></use></g><g transform=\\\"matrix(.0091,0,0,-0.0091,6.516,-5.741)\\\"><use xlink:href=\\\"#g50-31\\\"></use></g><g transform=\\\"matrix(.0091,0,0,-0.0091,5.668,3.784)\\\"><use xlink:href=\\\"#g50-103\\\"></use></g><g transform=\\\"matrix(.0065,0,0,-0.0065,10.391,5.885)\\\"><use xlink:href=\\\"#g176-50\\\"></use></g></svg> and <svg height=\\\"16.284pt\\\" style=\\\"vertical-align:-6.1815pt\\\" version=\\\"1.1\\\" viewbox=\\\"-0.0498162 -10.1025 18.8555 16.284\\\" width=\\\"18.8555pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,0,0)\\\"><use xlink:href=\\\"#g113-225\\\"></use></g><g transform=\\\"matrix(.0091,0,0,-0.0091,6.516,-5.741)\\\"><use xlink:href=\\\"#g50-43\\\"></use></g><g transform=\\\"matrix(.0091,0,0,-0.0091,5.668,3.784)\\\"><use xlink:href=\\\"#g50-103\\\"></use></g><g transform=\\\"matrix(.0091,0,0,-0.0091,10.866,3.784)\\\"><use xlink:href=\\\"#g50-110\\\"></use></g></svg> are the fractional edge domination number and FMXDN, respectively. Finally, we compare <svg height=\\\"16.284pt\\\" style=\\\"vertical-align:-6.1815pt\\\" version=\\\"1.1\\\" viewbox=\\\"-0.0498162 -10.1025 18.8555 16.284\\\" width=\\\"18.8555pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,0,0)\\\"><use xlink:href=\\\"#g113-225\\\"></use></g><g transform=\\\"matrix(.0091,0,0,-0.0091,6.516,-5.741)\\\"><use xlink:href=\\\"#g50-43\\\"></use></g><g transform=\\\"matrix(.0091,0,0,-0.0091,5.668,3.784)\\\"><use xlink:href=\\\"#g50-103\\\"></use></g><g transform=\\\"matrix(.0091,0,0,-0.0091,10.866,3.784)\\\"><use xlink:href=\\\"#g50-110\\\"></use></g></svg> to other resolvability-related parameters such as metric and fault-tolerant metric dimensions on some families of graphs.\",\"PeriodicalId\":54214,\"journal\":{\"name\":\"Journal of Mathematics\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-01-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1155/2024/6619654\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1155/2024/6619654","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
引用
批量引用