利用搅拌摩擦挤压提高铝合金芯片回收的工业效率:薄金属丝生产工艺

IF 5.3 3区 工程技术 Q1 ENGINEERING, MANUFACTURING
{"title":"利用搅拌摩擦挤压提高铝合金芯片回收的工业效率:薄金属丝生产工艺","authors":"","doi":"10.1007/s40684-023-00573-w","DOIUrl":null,"url":null,"abstract":"<h3>Abstract</h3> <p>Friction stir extrusion is one of the most promising solid-state chip recycling techniques because of its relative simplicity and high efficiency. One of the most straightforward applications for the process is the production of recycled wires to be utilized as filler material in welding or welding-based additive manufacturing processes, in order to create an industrial symbiosis link, fostering a circular economy and enhancing the technology readiness level of the process. The scalability of the process to the thin wires needed for such applications has not been investigated so far. In this paper, an experimental and numerical analysis was developed. A dedicated numerical model was first validated and then used to design the tool geometry. The effect of tool rotation and tool force on both “standard” mechanical properties, as Ultimate Tensile Strength and microhardness, and specific properties for the envisaged application, as the wrapping around reels with different radii, was investigated. The numerical model results were used to explain the influence of the process parameters on the material flow as well as on the distribution of the primary field variables, namely temperature, strain, and strain rate. Finally, the energy demand was measured, and the specific energy consumption (SEC) was evaluated. It was found that a conical shoulder surface favors the conditions for effective solid bonding. Low values of the extrusion force have detrimental effects on the wires properties as they result either in insufficient strain, or hot cracking defects. High values of extrusion force results in lower SEC, unlocking the potential of the process as symbiotic link enabler.</p>","PeriodicalId":14238,"journal":{"name":"International Journal of Precision Engineering and Manufacturing-Green Technology","volume":"18 1","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2024-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improving the Industrial Efficiency of Recycling Aluminum Alloy Chips Using Friction Stir Extrusion: Thin Wires Production Process\",\"authors\":\"\",\"doi\":\"10.1007/s40684-023-00573-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3>Abstract</h3> <p>Friction stir extrusion is one of the most promising solid-state chip recycling techniques because of its relative simplicity and high efficiency. One of the most straightforward applications for the process is the production of recycled wires to be utilized as filler material in welding or welding-based additive manufacturing processes, in order to create an industrial symbiosis link, fostering a circular economy and enhancing the technology readiness level of the process. The scalability of the process to the thin wires needed for such applications has not been investigated so far. In this paper, an experimental and numerical analysis was developed. A dedicated numerical model was first validated and then used to design the tool geometry. The effect of tool rotation and tool force on both “standard” mechanical properties, as Ultimate Tensile Strength and microhardness, and specific properties for the envisaged application, as the wrapping around reels with different radii, was investigated. The numerical model results were used to explain the influence of the process parameters on the material flow as well as on the distribution of the primary field variables, namely temperature, strain, and strain rate. Finally, the energy demand was measured, and the specific energy consumption (SEC) was evaluated. It was found that a conical shoulder surface favors the conditions for effective solid bonding. Low values of the extrusion force have detrimental effects on the wires properties as they result either in insufficient strain, or hot cracking defects. High values of extrusion force results in lower SEC, unlocking the potential of the process as symbiotic link enabler.</p>\",\"PeriodicalId\":14238,\"journal\":{\"name\":\"International Journal of Precision Engineering and Manufacturing-Green Technology\",\"volume\":\"18 1\",\"pages\":\"\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2024-01-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Precision Engineering and Manufacturing-Green Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s40684-023-00573-w\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MANUFACTURING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Precision Engineering and Manufacturing-Green Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s40684-023-00573-w","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0

摘要

摘要 搅拌摩擦挤压是最有前途的固态芯片回收技术之一,因为它相对简单、效率高。该工艺最直接的应用之一是生产回收线材,用作焊接或基于焊接的增材制造工艺的填充材料,以建立工业共生联系,促进循环经济,并提高该工艺的技术就绪水平。迄今为止,还没有人研究过该工艺对此类应用所需的薄金属丝的可扩展性。本文进行了实验和数值分析。首先验证了专用的数值模型,然后利用该模型设计了工具的几何形状。研究了工具旋转和工具力对 "标准 "机械性能(如极限拉伸强度和显微硬度)和设想应用的特定性能(如不同半径的卷轴缠绕)的影响。数值模型的结果用于解释工艺参数对材料流动的影响,以及对温度、应变和应变率等主要现场变量分布的影响。最后,对能量需求进行了测量,并评估了特定能量消耗(SEC)。研究发现,锥形肩面有利于有效的固体粘合。挤出力值过低会导致应变不足或热裂纹缺陷,从而对金属丝的性能产生不利影响。高挤出力值会导致较低的 SEC,从而释放出该工艺作为共生连接促进剂的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Improving the Industrial Efficiency of Recycling Aluminum Alloy Chips Using Friction Stir Extrusion: Thin Wires Production Process

Abstract

Friction stir extrusion is one of the most promising solid-state chip recycling techniques because of its relative simplicity and high efficiency. One of the most straightforward applications for the process is the production of recycled wires to be utilized as filler material in welding or welding-based additive manufacturing processes, in order to create an industrial symbiosis link, fostering a circular economy and enhancing the technology readiness level of the process. The scalability of the process to the thin wires needed for such applications has not been investigated so far. In this paper, an experimental and numerical analysis was developed. A dedicated numerical model was first validated and then used to design the tool geometry. The effect of tool rotation and tool force on both “standard” mechanical properties, as Ultimate Tensile Strength and microhardness, and specific properties for the envisaged application, as the wrapping around reels with different radii, was investigated. The numerical model results were used to explain the influence of the process parameters on the material flow as well as on the distribution of the primary field variables, namely temperature, strain, and strain rate. Finally, the energy demand was measured, and the specific energy consumption (SEC) was evaluated. It was found that a conical shoulder surface favors the conditions for effective solid bonding. Low values of the extrusion force have detrimental effects on the wires properties as they result either in insufficient strain, or hot cracking defects. High values of extrusion force results in lower SEC, unlocking the potential of the process as symbiotic link enabler.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
10.30
自引率
9.50%
发文量
65
审稿时长
5.3 months
期刊介绍: Green Technology aspects of precision engineering and manufacturing are becoming ever more important in current and future technologies. New knowledge in this field will aid in the advancement of various technologies that are needed to gain industrial competitiveness. To this end IJPEM - Green Technology aims to disseminate relevant developments and applied research works of high quality to the international community through efficient and rapid publication. IJPEM - Green Technology covers novel research contributions in all aspects of "Green" precision engineering and manufacturing.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信