Hao Lin, Genshun Wang, Qiao Su, Can Han, Chaowei Xue, Shi Yin, Liang Fang, Xixiang Xu, Pingqi Gao
{"title":"揭示硅太阳能电池获得高填充因子的机理","authors":"Hao Lin, Genshun Wang, Qiao Su, Can Han, Chaowei Xue, Shi Yin, Liang Fang, Xixiang Xu, Pingqi Gao","doi":"10.1002/pip.3775","DOIUrl":null,"url":null,"abstract":"<p>A world record conversion efficiency of 26.81% has been achieved recently by LONGi team on a solar cell with industry-grade silicon wafer (274 cm<sup>2</sup>, M6 size). An unparalleled high fill factor (<i>FF</i>) of up to 86.59% has also been certified in a separated device. The theoretical <i>FF</i> limit has been predicted to be 89.26%, while the practical <i>FF</i> is far below this limit for a prolonged interval due to the constraints of recombination (i.e., SRH recombination) and series resistance. The ideality factor (<i>m</i>) in the equivalent circuit of silicon solar cells is consistently ranging from 1 to 2 and rarely falls below 1, resulting in a relatively lower <i>FF</i> than 85%. Here, this work complements a systematic simulation study to demonstrate how to approach the <i>FF</i> limit in design of silicon solar cells. Firstly, a diode component with an ideality factor equal to 2/3 corresponding to Auger recombination is incorporated in the equivalent circuit for LONGi ultra-high <i>FF</i> solar cell; Secondly, an advanced equivalent circuit is put forward for comprehensive analysis of bulk recombination and surface recombination on the performance, in which specific ideality factors are directly correlated with various recombination mechanisms exhibiting explicit reverse saturation current density (<i>J</i><sub>0</sub>). Finally, we evaluate precisely the route for approaching theoretical <i>FF</i> in practical solar cell fabrication based on electrical design parameters using the developed model.</p>","PeriodicalId":223,"journal":{"name":"Progress in Photovoltaics","volume":"32 6","pages":"359-371"},"PeriodicalIF":8.0000,"publicationDate":"2024-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/pip.3775","citationCount":"0","resultStr":"{\"title\":\"Unveiling the mechanism of attaining high fill factor in silicon solar cells\",\"authors\":\"Hao Lin, Genshun Wang, Qiao Su, Can Han, Chaowei Xue, Shi Yin, Liang Fang, Xixiang Xu, Pingqi Gao\",\"doi\":\"10.1002/pip.3775\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>A world record conversion efficiency of 26.81% has been achieved recently by LONGi team on a solar cell with industry-grade silicon wafer (274 cm<sup>2</sup>, M6 size). An unparalleled high fill factor (<i>FF</i>) of up to 86.59% has also been certified in a separated device. The theoretical <i>FF</i> limit has been predicted to be 89.26%, while the practical <i>FF</i> is far below this limit for a prolonged interval due to the constraints of recombination (i.e., SRH recombination) and series resistance. The ideality factor (<i>m</i>) in the equivalent circuit of silicon solar cells is consistently ranging from 1 to 2 and rarely falls below 1, resulting in a relatively lower <i>FF</i> than 85%. Here, this work complements a systematic simulation study to demonstrate how to approach the <i>FF</i> limit in design of silicon solar cells. Firstly, a diode component with an ideality factor equal to 2/3 corresponding to Auger recombination is incorporated in the equivalent circuit for LONGi ultra-high <i>FF</i> solar cell; Secondly, an advanced equivalent circuit is put forward for comprehensive analysis of bulk recombination and surface recombination on the performance, in which specific ideality factors are directly correlated with various recombination mechanisms exhibiting explicit reverse saturation current density (<i>J</i><sub>0</sub>). Finally, we evaluate precisely the route for approaching theoretical <i>FF</i> in practical solar cell fabrication based on electrical design parameters using the developed model.</p>\",\"PeriodicalId\":223,\"journal\":{\"name\":\"Progress in Photovoltaics\",\"volume\":\"32 6\",\"pages\":\"359-371\"},\"PeriodicalIF\":8.0000,\"publicationDate\":\"2024-01-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/pip.3775\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Progress in Photovoltaics\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/pip.3775\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Photovoltaics","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/pip.3775","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Unveiling the mechanism of attaining high fill factor in silicon solar cells
A world record conversion efficiency of 26.81% has been achieved recently by LONGi team on a solar cell with industry-grade silicon wafer (274 cm2, M6 size). An unparalleled high fill factor (FF) of up to 86.59% has also been certified in a separated device. The theoretical FF limit has been predicted to be 89.26%, while the practical FF is far below this limit for a prolonged interval due to the constraints of recombination (i.e., SRH recombination) and series resistance. The ideality factor (m) in the equivalent circuit of silicon solar cells is consistently ranging from 1 to 2 and rarely falls below 1, resulting in a relatively lower FF than 85%. Here, this work complements a systematic simulation study to demonstrate how to approach the FF limit in design of silicon solar cells. Firstly, a diode component with an ideality factor equal to 2/3 corresponding to Auger recombination is incorporated in the equivalent circuit for LONGi ultra-high FF solar cell; Secondly, an advanced equivalent circuit is put forward for comprehensive analysis of bulk recombination and surface recombination on the performance, in which specific ideality factors are directly correlated with various recombination mechanisms exhibiting explicit reverse saturation current density (J0). Finally, we evaluate precisely the route for approaching theoretical FF in practical solar cell fabrication based on electrical design parameters using the developed model.
期刊介绍:
Progress in Photovoltaics offers a prestigious forum for reporting advances in this rapidly developing technology, aiming to reach all interested professionals, researchers and energy policy-makers.
The key criterion is that all papers submitted should report substantial “progress” in photovoltaics.
Papers are encouraged that report substantial “progress” such as gains in independently certified solar cell efficiency, eligible for a new entry in the journal''s widely referenced Solar Cell Efficiency Tables.
Examples of papers that will not be considered for publication are those that report development in materials without relation to data on cell performance, routine analysis, characterisation or modelling of cells or processing sequences, routine reports of system performance, improvements in electronic hardware design, or country programs, although invited papers may occasionally be solicited in these areas to capture accumulated “progress”.