寻找无中子双贝塔衰变

{"title":"寻找无中子双贝塔衰变","authors":"","doi":"10.1007/s40766-023-00049-2","DOIUrl":null,"url":null,"abstract":"<h3>Abstract</h3> <p>Neutrinos are the only particles in the Standard Model that could be Majorana fermions, that is, completely neutral fermions that are their own antiparticles. The most sensitive known experimental method to verify whether neutrinos are Majorana particles is the search for neutrinoless double-beta decay. The last 2 decades have witnessed the development of a vigorous program of neutrinoless double-beta decay experiments, spanning several isotopes and developing different strategies to handle the backgrounds masking a possible signal. In addition, remarkable progress has been made in the understanding of the nuclear matrix elements of neutrinoless double-beta decay, thus reducing a substantial part of the theoretical uncertainties affecting the particle–physics interpretation of the process. On the other hand, the negative results by several experiments, combined with the hints that the neutrino mass ordering could be normal, may imply very long lifetimes for the neutrinoless double-beta decay process. In this report, we review the main aspects of such process, the recent progress on theoretical ideas and the experimental state of the art. We then consider the experimental challenges to be addressed to increase the sensitivity to detect the process in the likely case that lifetimes are much longer than currently explored, and discuss a selection of the most promising experimental efforts.</p>","PeriodicalId":501364,"journal":{"name":"La Rivista del Nuovo Cimento","volume":"28 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The search for neutrinoless double-beta decay\",\"authors\":\"\",\"doi\":\"10.1007/s40766-023-00049-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3>Abstract</h3> <p>Neutrinos are the only particles in the Standard Model that could be Majorana fermions, that is, completely neutral fermions that are their own antiparticles. The most sensitive known experimental method to verify whether neutrinos are Majorana particles is the search for neutrinoless double-beta decay. The last 2 decades have witnessed the development of a vigorous program of neutrinoless double-beta decay experiments, spanning several isotopes and developing different strategies to handle the backgrounds masking a possible signal. In addition, remarkable progress has been made in the understanding of the nuclear matrix elements of neutrinoless double-beta decay, thus reducing a substantial part of the theoretical uncertainties affecting the particle–physics interpretation of the process. On the other hand, the negative results by several experiments, combined with the hints that the neutrino mass ordering could be normal, may imply very long lifetimes for the neutrinoless double-beta decay process. In this report, we review the main aspects of such process, the recent progress on theoretical ideas and the experimental state of the art. We then consider the experimental challenges to be addressed to increase the sensitivity to detect the process in the likely case that lifetimes are much longer than currently explored, and discuss a selection of the most promising experimental efforts.</p>\",\"PeriodicalId\":501364,\"journal\":{\"name\":\"La Rivista del Nuovo Cimento\",\"volume\":\"28 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"La Rivista del Nuovo Cimento\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s40766-023-00049-2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"La Rivista del Nuovo Cimento","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s40766-023-00049-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

摘要 中微子是标准模型中唯一可能是马约拉纳费米子的粒子,也就是说,完全中性的费米子是它们自身的反粒子。要验证中微子是否是马约拉纳粒子,已知最灵敏的实验方法是寻找无中微子双贝塔衰变。在过去的二十年里,无中微子双贝塔衰变实验项目得到了蓬勃发展,涵盖了多种同位素,并开发了不同的策略来处理掩盖可能信号的背景。此外,在了解无中子双贝塔衰变的核基质元素方面也取得了显著进展,从而减少了很大一部分影响粒子物理学对这一过程解释的理论不确定性。另一方面,一些实验的负面结果,加上中微子质量排序可能正常的暗示,可能意味着无中微子双贝塔衰变过程的寿命非常长。在本报告中,我们回顾了这一过程的主要方面、理论观点的最新进展以及实验现状。然后,我们考虑了为提高灵敏度以探测寿命可能比目前探索的要长很多的过程而需要应对的实验挑战,并讨论了一些最有希望的实验努力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The search for neutrinoless double-beta decay

Abstract

Neutrinos are the only particles in the Standard Model that could be Majorana fermions, that is, completely neutral fermions that are their own antiparticles. The most sensitive known experimental method to verify whether neutrinos are Majorana particles is the search for neutrinoless double-beta decay. The last 2 decades have witnessed the development of a vigorous program of neutrinoless double-beta decay experiments, spanning several isotopes and developing different strategies to handle the backgrounds masking a possible signal. In addition, remarkable progress has been made in the understanding of the nuclear matrix elements of neutrinoless double-beta decay, thus reducing a substantial part of the theoretical uncertainties affecting the particle–physics interpretation of the process. On the other hand, the negative results by several experiments, combined with the hints that the neutrino mass ordering could be normal, may imply very long lifetimes for the neutrinoless double-beta decay process. In this report, we review the main aspects of such process, the recent progress on theoretical ideas and the experimental state of the art. We then consider the experimental challenges to be addressed to increase the sensitivity to detect the process in the likely case that lifetimes are much longer than currently explored, and discuss a selection of the most promising experimental efforts.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信