论弱 L 均值条件下牛顿三步法的存在定理

IF 0.8 4区 综合性期刊 Q3 MULTIDISCIPLINARY SCIENCES
J. P. Jaiswal
{"title":"论弱 L 均值条件下牛顿三步法的存在定理","authors":"J. P. Jaiswal","doi":"10.1007/s40010-023-00857-5","DOIUrl":null,"url":null,"abstract":"<div><p>In the present paper, we have studied the local convergence of a three-step Newton-type method for solving nonlinear equations in Banach spaces under weak <i>L</i>-average. More precisely, we have derived the two existence theorems when the first-order Fréchet derivative of nonlinear operator satisfies the radius and center Lipschitz condition with a weak <i>L</i>-average; particularly, it is assumed that <i>L</i> is positive integrable function but not necessarily non-decreasing, which was assumed in the earlier discussion.</p></div>","PeriodicalId":744,"journal":{"name":"Proceedings of the National Academy of Sciences, India Section A: Physical Sciences","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2024-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the Existence Theorem of a Three-Step Newton-Type Method Under Weak L-Average\",\"authors\":\"J. P. Jaiswal\",\"doi\":\"10.1007/s40010-023-00857-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In the present paper, we have studied the local convergence of a three-step Newton-type method for solving nonlinear equations in Banach spaces under weak <i>L</i>-average. More precisely, we have derived the two existence theorems when the first-order Fréchet derivative of nonlinear operator satisfies the radius and center Lipschitz condition with a weak <i>L</i>-average; particularly, it is assumed that <i>L</i> is positive integrable function but not necessarily non-decreasing, which was assumed in the earlier discussion.</p></div>\",\"PeriodicalId\":744,\"journal\":{\"name\":\"Proceedings of the National Academy of Sciences, India Section A: Physical Sciences\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-01-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the National Academy of Sciences, India Section A: Physical Sciences\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40010-023-00857-5\",\"RegionNum\":4,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the National Academy of Sciences, India Section A: Physical Sciences","FirstCategoryId":"103","ListUrlMain":"https://link.springer.com/article/10.1007/s40010-023-00857-5","RegionNum":4,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了在弱 L 平均条件下求解巴拿赫空间中非线性方程的三步牛顿法的局部收敛性。更确切地说,当非线性算子的一阶弗雷谢特导数满足半径和中心 Lipschitz 条件且具有弱 L 平均时,我们推导出了两个存在性定理;特别是,假设 L 是正可积分函数,但不一定是非递减的,这在之前的讨论中是假设过的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the Existence Theorem of a Three-Step Newton-Type Method Under Weak L-Average

In the present paper, we have studied the local convergence of a three-step Newton-type method for solving nonlinear equations in Banach spaces under weak L-average. More precisely, we have derived the two existence theorems when the first-order Fréchet derivative of nonlinear operator satisfies the radius and center Lipschitz condition with a weak L-average; particularly, it is assumed that L is positive integrable function but not necessarily non-decreasing, which was assumed in the earlier discussion.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.60
自引率
0.00%
发文量
37
审稿时长
>12 weeks
期刊介绍: To promote research in all the branches of Science & Technology; and disseminate the knowledge and advancements in Science & Technology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信