方形感觉控制下丘脑-皮层神经网络非线性波形转换的动态预测

IF 3.1 3区 工程技术 Q2 NEUROSCIENCES
Yeyin Xu, Ying Wu
{"title":"方形感觉控制下丘脑-皮层神经网络非线性波形转换的动态预测","authors":"Yeyin Xu, Ying Wu","doi":"10.1007/s11571-023-10060-2","DOIUrl":null,"url":null,"abstract":"<p>Waveform transitions have high correlation to spike wave discharges and polyspike wave discharges in seizure dynamics. This research adopts nonlinear dynamics to study the waveform transitions in a cerebral thalamo-coritcal neural network subjected to a square sensory control via discretization and mappings. The continuous non-smooth network outputs are discretized to establish implicit mapping chains or loops for stable and unstable waveform solutions. Bifurcation trees of period-1 to period-2 waveforms as well as independent bifurcation tree of period-3 to period-6 waveforms are obtained theoretically. The independent bifurcation tree should be taken much care during the control since it coexists with global stable waveforms but contains more spikes. Stability and bifurcations of the nonlinear waveform transitions are predicted by eigenvalue analysis of the discretized model. The transient process from unstable waveform to stable waveform is illustrated. The spike adding and period-doubling phenomenon are presented for illustration of the network response after control. The dominant frequency components and the detailed quantity levels of the corresponding amplitudes are exhibited in the harmonic spectrums which can be implemented to controller design for reduction and elimination of the absence seizures. This research presents new perspectives for the waveform transitions and provides theories and data for seizure prediction and regulation.</p>","PeriodicalId":10500,"journal":{"name":"Cognitive Neurodynamics","volume":"18 1","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dynamic prediction of nonlinear waveform transitions in a thalamo-cortical neural network under a square sensory control\",\"authors\":\"Yeyin Xu, Ying Wu\",\"doi\":\"10.1007/s11571-023-10060-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Waveform transitions have high correlation to spike wave discharges and polyspike wave discharges in seizure dynamics. This research adopts nonlinear dynamics to study the waveform transitions in a cerebral thalamo-coritcal neural network subjected to a square sensory control via discretization and mappings. The continuous non-smooth network outputs are discretized to establish implicit mapping chains or loops for stable and unstable waveform solutions. Bifurcation trees of period-1 to period-2 waveforms as well as independent bifurcation tree of period-3 to period-6 waveforms are obtained theoretically. The independent bifurcation tree should be taken much care during the control since it coexists with global stable waveforms but contains more spikes. Stability and bifurcations of the nonlinear waveform transitions are predicted by eigenvalue analysis of the discretized model. The transient process from unstable waveform to stable waveform is illustrated. The spike adding and period-doubling phenomenon are presented for illustration of the network response after control. The dominant frequency components and the detailed quantity levels of the corresponding amplitudes are exhibited in the harmonic spectrums which can be implemented to controller design for reduction and elimination of the absence seizures. This research presents new perspectives for the waveform transitions and provides theories and data for seizure prediction and regulation.</p>\",\"PeriodicalId\":10500,\"journal\":{\"name\":\"Cognitive Neurodynamics\",\"volume\":\"18 1\",\"pages\":\"\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-01-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cognitive Neurodynamics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s11571-023-10060-2\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cognitive Neurodynamics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11571-023-10060-2","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

波形转换与癫痫发作动力学中的尖峰波放电和多尖峰波放电具有高度相关性。本研究采用非线性动力学方法,通过离散化和映射来研究大脑丘脑-脊髓神经网络在方波感觉控制下的波形转换。连续的非光滑网络输出被离散化,以建立隐式映射链或环路,从而得到稳定和不稳定的波形解。理论上得到了周期-1 至周期-2 波形的分叉树以及周期-3 至周期-6 波形的独立分叉树。由于独立分叉树与全局稳定波形共存,但包含更多尖峰,因此在控制过程中应格外注意。通过对离散模型进行特征值分析,预测了非线性波形转换的稳定性和分岔。图示了从不稳定波形到稳定波形的瞬态过程。为说明控制后的网络响应,介绍了尖峰增加和周期加倍现象。谐波频谱中显示了主导频率成分和相应振幅的详细数量级,可用于控制器设计,以减少和消除失神发作。这项研究为波形转换提供了新的视角,并为癫痫发作预测和调节提供了理论和数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Dynamic prediction of nonlinear waveform transitions in a thalamo-cortical neural network under a square sensory control

Dynamic prediction of nonlinear waveform transitions in a thalamo-cortical neural network under a square sensory control

Waveform transitions have high correlation to spike wave discharges and polyspike wave discharges in seizure dynamics. This research adopts nonlinear dynamics to study the waveform transitions in a cerebral thalamo-coritcal neural network subjected to a square sensory control via discretization and mappings. The continuous non-smooth network outputs are discretized to establish implicit mapping chains or loops for stable and unstable waveform solutions. Bifurcation trees of period-1 to period-2 waveforms as well as independent bifurcation tree of period-3 to period-6 waveforms are obtained theoretically. The independent bifurcation tree should be taken much care during the control since it coexists with global stable waveforms but contains more spikes. Stability and bifurcations of the nonlinear waveform transitions are predicted by eigenvalue analysis of the discretized model. The transient process from unstable waveform to stable waveform is illustrated. The spike adding and period-doubling phenomenon are presented for illustration of the network response after control. The dominant frequency components and the detailed quantity levels of the corresponding amplitudes are exhibited in the harmonic spectrums which can be implemented to controller design for reduction and elimination of the absence seizures. This research presents new perspectives for the waveform transitions and provides theories and data for seizure prediction and regulation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cognitive Neurodynamics
Cognitive Neurodynamics 医学-神经科学
CiteScore
6.90
自引率
18.90%
发文量
140
审稿时长
12 months
期刊介绍: Cognitive Neurodynamics provides a unique forum of communication and cooperation for scientists and engineers working in the field of cognitive neurodynamics, intelligent science and applications, bridging the gap between theory and application, without any preference for pure theoretical, experimental or computational models. The emphasis is to publish original models of cognitive neurodynamics, novel computational theories and experimental results. In particular, intelligent science inspired by cognitive neuroscience and neurodynamics is also very welcome. The scope of Cognitive Neurodynamics covers cognitive neuroscience, neural computation based on dynamics, computer science, intelligent science as well as their interdisciplinary applications in the natural and engineering sciences. Papers that are appropriate for non-specialist readers are encouraged. 1. There is no page limit for manuscripts submitted to Cognitive Neurodynamics. Research papers should clearly represent an important advance of especially broad interest to researchers and technologists in neuroscience, biophysics, BCI, neural computer and intelligent robotics. 2. Cognitive Neurodynamics also welcomes brief communications: short papers reporting results that are of genuinely broad interest but that for one reason and another do not make a sufficiently complete story to justify a full article publication. Brief Communications should consist of approximately four manuscript pages. 3. Cognitive Neurodynamics publishes review articles in which a specific field is reviewed through an exhaustive literature survey. There are no restrictions on the number of pages. Review articles are usually invited, but submitted reviews will also be considered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信