Senhua Zhang, Jianting Zhou, Junfeng Xia, Hong Zhang, Kai Tong, Xiaotian Wu, Leng Liao
{"title":"通过共振增强磁弹性效应监测大振幅循环电缆张力","authors":"Senhua Zhang, Jianting Zhou, Junfeng Xia, Hong Zhang, Kai Tong, Xiaotian Wu, Leng Liao","doi":"10.1007/s10921-023-01039-4","DOIUrl":null,"url":null,"abstract":"<div><p>Cable tension is an important parameter for monitoring the health of cable-supported bridges. Live loads cause periodic changes in cable tension. Given the lack of test methods for cyclic cable tension, the resonance-enhanced magnetoelastic (REME) effect was adopted for cable tension monitoring. Combining the magnetoelastic effect and the electromagnetic induction theory, the relationship between cable tension and the REME sensor’s induced voltage was deduced. This relationship indicated the feasibility of using the REME effect to monitor cable tension. According to the variation law of cable tension, a cyclic cable tension monitoring experiment was carried out. Based on the experimental results, a cyclic cable tension monitoring method via the REME effect was proposed. When the tension variation amplitude was less than 100% of the design tension, the monitoring error was less than 5%. The proposed method could be used to accurately monitor the large-amplitude cyclic cable tension.</p></div>","PeriodicalId":655,"journal":{"name":"Journal of Nondestructive Evaluation","volume":"43 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Monitoring of Large-Amplitude Cyclic Cable Tension via Resonance-Enhanced Magnetoelastic Effect\",\"authors\":\"Senhua Zhang, Jianting Zhou, Junfeng Xia, Hong Zhang, Kai Tong, Xiaotian Wu, Leng Liao\",\"doi\":\"10.1007/s10921-023-01039-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Cable tension is an important parameter for monitoring the health of cable-supported bridges. Live loads cause periodic changes in cable tension. Given the lack of test methods for cyclic cable tension, the resonance-enhanced magnetoelastic (REME) effect was adopted for cable tension monitoring. Combining the magnetoelastic effect and the electromagnetic induction theory, the relationship between cable tension and the REME sensor’s induced voltage was deduced. This relationship indicated the feasibility of using the REME effect to monitor cable tension. According to the variation law of cable tension, a cyclic cable tension monitoring experiment was carried out. Based on the experimental results, a cyclic cable tension monitoring method via the REME effect was proposed. When the tension variation amplitude was less than 100% of the design tension, the monitoring error was less than 5%. The proposed method could be used to accurately monitor the large-amplitude cyclic cable tension.</p></div>\",\"PeriodicalId\":655,\"journal\":{\"name\":\"Journal of Nondestructive Evaluation\",\"volume\":\"43 1\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-01-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Nondestructive Evaluation\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10921-023-01039-4\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, CHARACTERIZATION & TESTING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nondestructive Evaluation","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s10921-023-01039-4","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
Monitoring of Large-Amplitude Cyclic Cable Tension via Resonance-Enhanced Magnetoelastic Effect
Cable tension is an important parameter for monitoring the health of cable-supported bridges. Live loads cause periodic changes in cable tension. Given the lack of test methods for cyclic cable tension, the resonance-enhanced magnetoelastic (REME) effect was adopted for cable tension monitoring. Combining the magnetoelastic effect and the electromagnetic induction theory, the relationship between cable tension and the REME sensor’s induced voltage was deduced. This relationship indicated the feasibility of using the REME effect to monitor cable tension. According to the variation law of cable tension, a cyclic cable tension monitoring experiment was carried out. Based on the experimental results, a cyclic cable tension monitoring method via the REME effect was proposed. When the tension variation amplitude was less than 100% of the design tension, the monitoring error was less than 5%. The proposed method could be used to accurately monitor the large-amplitude cyclic cable tension.
期刊介绍:
Journal of Nondestructive Evaluation provides a forum for the broad range of scientific and engineering activities involved in developing a quantitative nondestructive evaluation (NDE) capability. This interdisciplinary journal publishes papers on the development of new equipment, analyses, and approaches to nondestructive measurements.