粘弹性机织物/混合复合材料微机械材料模型的建立与简化

IF 2.2 3区 工程技术 Q2 MECHANICS
K. Ganguly, H. Roy, A. Bhattacharjee
{"title":"粘弹性机织物/混合复合材料微机械材料模型的建立与简化","authors":"K. Ganguly, H. Roy, A. Bhattacharjee","doi":"10.1007/s00419-023-02528-8","DOIUrl":null,"url":null,"abstract":"<p>The present research focuses on proposing a novel theoretical micromechanical model (TMM) designed to derive the frequency-dependent storage and loss moduli of woven fabric (WF)-matrix composites, as well as WF-particulate matrix (Hybrid) composites, based on their constituent properties. The TMM serves as a higher-order modulus operator, accounting for the composite woven fabric unit cell geometry and the effective modulus of both the fabric and matrix using equivalent modulus theory. This model also incorporates viscoelastic parameters obtained from literature and experiments for each constituent, namely woven glass fabric and SiC particles embedded in an epoxy matrix. The proposed TMM is validated by comparing its predictions of the frequency-dependent storage modulus and loss factor with experimental data acquired through dynamic mechanical analyzer tests on samples with varying fiber and particulate volume fractions. To address the inherent complexities of the higher-order modulus operator, the model is streamlined into a lower-order form expressed as a function of two separate variables: volume fraction and a differential time operator. This advancement enhances the applicability and usability of the model for predicting the mechanical behaviour of these complex composite materials. This novel mathematical model eliminates the cost and time for conducting the explicit experiments as well as can be applied to different range of similar hybrid composites considering the fact that the constituent properties are known.</p>","PeriodicalId":477,"journal":{"name":"Archive of Applied Mechanics","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2024-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Establishment and simplification of micromechanical material model for viscoelastic woven fabric/hybrid composite\",\"authors\":\"K. Ganguly, H. Roy, A. Bhattacharjee\",\"doi\":\"10.1007/s00419-023-02528-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The present research focuses on proposing a novel theoretical micromechanical model (TMM) designed to derive the frequency-dependent storage and loss moduli of woven fabric (WF)-matrix composites, as well as WF-particulate matrix (Hybrid) composites, based on their constituent properties. The TMM serves as a higher-order modulus operator, accounting for the composite woven fabric unit cell geometry and the effective modulus of both the fabric and matrix using equivalent modulus theory. This model also incorporates viscoelastic parameters obtained from literature and experiments for each constituent, namely woven glass fabric and SiC particles embedded in an epoxy matrix. The proposed TMM is validated by comparing its predictions of the frequency-dependent storage modulus and loss factor with experimental data acquired through dynamic mechanical analyzer tests on samples with varying fiber and particulate volume fractions. To address the inherent complexities of the higher-order modulus operator, the model is streamlined into a lower-order form expressed as a function of two separate variables: volume fraction and a differential time operator. This advancement enhances the applicability and usability of the model for predicting the mechanical behaviour of these complex composite materials. This novel mathematical model eliminates the cost and time for conducting the explicit experiments as well as can be applied to different range of similar hybrid composites considering the fact that the constituent properties are known.</p>\",\"PeriodicalId\":477,\"journal\":{\"name\":\"Archive of Applied Mechanics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-01-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Archive of Applied Mechanics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s00419-023-02528-8\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archive of Applied Mechanics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s00419-023-02528-8","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

摘要

本研究的重点是提出一种新颖的微机械理论模型(TMM),旨在根据编织物(WF)-基体复合材料以及 WF-微粒基体(Hybrid)复合材料的组成特性,推导出其随频率变化的存储模量和损耗模量。TMM 可作为高阶模量算子,利用等效模量理论计算复合材料编织物单元格的几何形状以及编织物和基体的有效模量。该模型还纳入了从文献和实验中获得的各成分的粘弹性参数,即玻璃编织物和环氧树脂基体中嵌入的碳化硅颗粒。通过比较所预测的随频率变化的存储模量和损耗因子,以及对不同纤维和颗粒体积分数的样品进行动态机械分析仪测试所获得的实验数据,对所提出的 TMM 模型进行了验证。为了解决高阶模量算子固有的复杂性,该模型被简化为低阶形式,表示为两个独立变量的函数:体积分数和微分时间算子。这一进步提高了模型的适用性和可用性,可用于预测这些复杂复合材料的机械性能。这种新颖的数学模型省去了进行明确实验所需的成本和时间,而且考虑到成分属性已知这一事实,还可应用于不同范围的类似混合复合材料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Establishment and simplification of micromechanical material model for viscoelastic woven fabric/hybrid composite

Establishment and simplification of micromechanical material model for viscoelastic woven fabric/hybrid composite

The present research focuses on proposing a novel theoretical micromechanical model (TMM) designed to derive the frequency-dependent storage and loss moduli of woven fabric (WF)-matrix composites, as well as WF-particulate matrix (Hybrid) composites, based on their constituent properties. The TMM serves as a higher-order modulus operator, accounting for the composite woven fabric unit cell geometry and the effective modulus of both the fabric and matrix using equivalent modulus theory. This model also incorporates viscoelastic parameters obtained from literature and experiments for each constituent, namely woven glass fabric and SiC particles embedded in an epoxy matrix. The proposed TMM is validated by comparing its predictions of the frequency-dependent storage modulus and loss factor with experimental data acquired through dynamic mechanical analyzer tests on samples with varying fiber and particulate volume fractions. To address the inherent complexities of the higher-order modulus operator, the model is streamlined into a lower-order form expressed as a function of two separate variables: volume fraction and a differential time operator. This advancement enhances the applicability and usability of the model for predicting the mechanical behaviour of these complex composite materials. This novel mathematical model eliminates the cost and time for conducting the explicit experiments as well as can be applied to different range of similar hybrid composites considering the fact that the constituent properties are known.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.40
自引率
10.70%
发文量
234
审稿时长
4-8 weeks
期刊介绍: Archive of Applied Mechanics serves as a platform to communicate original research of scholarly value in all branches of theoretical and applied mechanics, i.e., in solid and fluid mechanics, dynamics and vibrations. It focuses on continuum mechanics in general, structural mechanics, biomechanics, micro- and nano-mechanics as well as hydrodynamics. In particular, the following topics are emphasised: thermodynamics of materials, material modeling, multi-physics, mechanical properties of materials, homogenisation, phase transitions, fracture and damage mechanics, vibration, wave propagation experimental mechanics as well as machine learning techniques in the context of applied mechanics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信