论具有大规模传播机制和非对称散布模式的流行病斑块模型的动力学特征

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Rachidi B. Salako, Yixiang Wu
{"title":"论具有大规模传播机制和非对称散布模式的流行病斑块模型的动力学特征","authors":"Rachidi B. Salako,&nbsp;Yixiang Wu","doi":"10.1111/sapm.12674","DOIUrl":null,"url":null,"abstract":"<p>This paper examines an epidemic patch model with mass-action transmission mechanism and asymmetric connectivity matrix. Results on the global dynamics of solutions and the spatial structures of endemic equilibrium (EE) solutions are obtained. In particular, we show that when the basic reproduction number <span></span><math>\n <semantics>\n <msub>\n <mi>R</mi>\n <mn>0</mn>\n </msub>\n <annotation>$\\mathcal {R}_0$</annotation>\n </semantics></math> is less than one and the dispersal rate of the susceptible population <span></span><math>\n <semantics>\n <msub>\n <mi>d</mi>\n <mi>S</mi>\n </msub>\n <annotation>$d_S$</annotation>\n </semantics></math> is large, the population would eventually stabilize at the disease-free equilibrium. However, the disease may persist if <span></span><math>\n <semantics>\n <msub>\n <mi>d</mi>\n <mi>S</mi>\n </msub>\n <annotation>$d_S$</annotation>\n </semantics></math> is small, even if <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>R</mi>\n <mn>0</mn>\n </msub>\n <mo>&lt;</mo>\n <mn>1</mn>\n </mrow>\n <annotation>$\\mathcal {R}_0&amp;lt;1$</annotation>\n </semantics></math>. In such a scenario, explicit conditions on the model parameters that lead to the existence of multiple EE are identified. These results provide new insights into the dynamics of infectious diseases in multipatch environments. Moreover, results in Li and Peng (<i>Stud Appl Math</i>. 2023;150(3):650-704), which is for the same model but with symmetric connectivity matrix, are generalized and improved.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the dynamics of an epidemic patch model with mass-action transmission mechanism and asymmetric dispersal patterns\",\"authors\":\"Rachidi B. Salako,&nbsp;Yixiang Wu\",\"doi\":\"10.1111/sapm.12674\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This paper examines an epidemic patch model with mass-action transmission mechanism and asymmetric connectivity matrix. Results on the global dynamics of solutions and the spatial structures of endemic equilibrium (EE) solutions are obtained. In particular, we show that when the basic reproduction number <span></span><math>\\n <semantics>\\n <msub>\\n <mi>R</mi>\\n <mn>0</mn>\\n </msub>\\n <annotation>$\\\\mathcal {R}_0$</annotation>\\n </semantics></math> is less than one and the dispersal rate of the susceptible population <span></span><math>\\n <semantics>\\n <msub>\\n <mi>d</mi>\\n <mi>S</mi>\\n </msub>\\n <annotation>$d_S$</annotation>\\n </semantics></math> is large, the population would eventually stabilize at the disease-free equilibrium. However, the disease may persist if <span></span><math>\\n <semantics>\\n <msub>\\n <mi>d</mi>\\n <mi>S</mi>\\n </msub>\\n <annotation>$d_S$</annotation>\\n </semantics></math> is small, even if <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>R</mi>\\n <mn>0</mn>\\n </msub>\\n <mo>&lt;</mo>\\n <mn>1</mn>\\n </mrow>\\n <annotation>$\\\\mathcal {R}_0&amp;lt;1$</annotation>\\n </semantics></math>. In such a scenario, explicit conditions on the model parameters that lead to the existence of multiple EE are identified. These results provide new insights into the dynamics of infectious diseases in multipatch environments. Moreover, results in Li and Peng (<i>Stud Appl Math</i>. 2023;150(3):650-704), which is for the same model but with symmetric connectivity matrix, are generalized and improved.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-01-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/sapm.12674\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/sapm.12674","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了一个具有大规模传播机制和非对称连接矩阵的流行病斑块模型。本文得出了关于解的全局动力学和流行均衡(EE)解的空间结构的结果。我们特别指出,当基本繁殖数 R0$\mathcal {R}_0$ 小于 1 且易感种群的扩散率 dS$d_S$ 较大时,种群最终会稳定在无病平衡。然而,如果 dS$d_S$ 较小,即使 R0<1$mathcal {R}_0<1$,疾病也可能持续存在。在这种情况下,确定了导致多重 EE 存在的模型参数的明确条件。这些结果为研究多斑块环境下的传染病动态提供了新的视角。此外,Li 和 Peng(Stud Appl Math.2023; 150(3):650-704)中的结果进行了归纳和改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the dynamics of an epidemic patch model with mass-action transmission mechanism and asymmetric dispersal patterns

This paper examines an epidemic patch model with mass-action transmission mechanism and asymmetric connectivity matrix. Results on the global dynamics of solutions and the spatial structures of endemic equilibrium (EE) solutions are obtained. In particular, we show that when the basic reproduction number R 0 $\mathcal {R}_0$ is less than one and the dispersal rate of the susceptible population d S $d_S$ is large, the population would eventually stabilize at the disease-free equilibrium. However, the disease may persist if d S $d_S$ is small, even if R 0 < 1 $\mathcal {R}_0&lt;1$ . In such a scenario, explicit conditions on the model parameters that lead to the existence of multiple EE are identified. These results provide new insights into the dynamics of infectious diseases in multipatch environments. Moreover, results in Li and Peng (Stud Appl Math. 2023;150(3):650-704), which is for the same model but with symmetric connectivity matrix, are generalized and improved.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信