在开放式群组成员中使用 GMM:启示

IF 1.9 4区 物理与天体物理 Q2 ASTRONOMY & ASTROPHYSICS
M. Mahmudunnobe , P. Hasan , M. Raja , M. Saifuddin , S.N. Hasan
{"title":"在开放式群组成员中使用 GMM:启示","authors":"M. Mahmudunnobe ,&nbsp;P. Hasan ,&nbsp;M. Raja ,&nbsp;M. Saifuddin ,&nbsp;S.N. Hasan","doi":"10.1016/j.ascom.2024.100792","DOIUrl":null,"url":null,"abstract":"<div><p>The unprecedented precision of Gaia has led to a paradigm shift in membership determination of open clusters where a variety of machine learning (ML) models can be employed. In this paper, we apply the unsupervised Gaussian Mixture Model (GMM) to a sample of thirteen clusters with varying ages (<span><math><mrow><mi>l</mi><mi>o</mi><mi>g</mi><mspace></mspace><mi>t</mi><mo>≈</mo></mrow></math></span> 6.38-9.64) and distances (441-5183 pc) from Gaia DR3 data to determine membership. We use ASteca to determine parameters for the clusters from our revised membership data. We define a quantifiable metric Modified Silhouette Score (MSS) to evaluate its performance. We study the dependence of MSS on age, distance, extinction, galactic latitude and longitude, and other parameters to find the particular cases when GMM seems to be more efficient than other methods. We compared GMM for nine clusters with varying ages but we did not find any significant differences between GMM performance for younger and older clusters. But we found a moderate correlation between GMM performance and the cluster distance, where GMM works better for closer clusters. We find that GMM does not work very well for clusters at distances larger than 3 kpc.</p></div>","PeriodicalId":48757,"journal":{"name":"Astronomy and Computing","volume":"46 ","pages":"Article 100792"},"PeriodicalIF":1.9000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2213133724000076/pdfft?md5=181a3f6ba38a1f4c62fc1ed559a32440&pid=1-s2.0-S2213133724000076-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Using GMM in open cluster membership: An insight\",\"authors\":\"M. Mahmudunnobe ,&nbsp;P. Hasan ,&nbsp;M. Raja ,&nbsp;M. Saifuddin ,&nbsp;S.N. Hasan\",\"doi\":\"10.1016/j.ascom.2024.100792\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The unprecedented precision of Gaia has led to a paradigm shift in membership determination of open clusters where a variety of machine learning (ML) models can be employed. In this paper, we apply the unsupervised Gaussian Mixture Model (GMM) to a sample of thirteen clusters with varying ages (<span><math><mrow><mi>l</mi><mi>o</mi><mi>g</mi><mspace></mspace><mi>t</mi><mo>≈</mo></mrow></math></span> 6.38-9.64) and distances (441-5183 pc) from Gaia DR3 data to determine membership. We use ASteca to determine parameters for the clusters from our revised membership data. We define a quantifiable metric Modified Silhouette Score (MSS) to evaluate its performance. We study the dependence of MSS on age, distance, extinction, galactic latitude and longitude, and other parameters to find the particular cases when GMM seems to be more efficient than other methods. We compared GMM for nine clusters with varying ages but we did not find any significant differences between GMM performance for younger and older clusters. But we found a moderate correlation between GMM performance and the cluster distance, where GMM works better for closer clusters. We find that GMM does not work very well for clusters at distances larger than 3 kpc.</p></div>\",\"PeriodicalId\":48757,\"journal\":{\"name\":\"Astronomy and Computing\",\"volume\":\"46 \",\"pages\":\"Article 100792\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2213133724000076/pdfft?md5=181a3f6ba38a1f4c62fc1ed559a32440&pid=1-s2.0-S2213133724000076-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Astronomy and Computing\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2213133724000076\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Astronomy and Computing","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2213133724000076","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

Gaia 史无前例的精确性促使开放星团的成员确定发生了范式转变,可以采用多种机器学习(ML)模型。在本文中,我们将无监督高斯混合模型(GMM)应用于来自盖亚DR3数据的13个年龄(logt≈ 6.38-9.64)和距离(441-5183 pc)各不相同的星团样本,以确定其成员资格。我们使用 ASteca 从修订后的成员数据中确定星团的参数。我们定义了一个量化指标 "修正轮廓分数"(MSS)来评估其性能。我们研究了 MSS 与年龄、距离、消光、银河经纬度和其他参数的关系,以找出 GMM 似乎比其他方法更有效的特定情况。我们比较了九个不同年龄星团的 GMM,但没有发现年轻星团和年长星团的 GMM 性能有任何显著差异。但我们发现,GMM 性能与聚类距离之间存在适度的相关性,即 GMM 对距离较近的聚类效果更好。我们发现,对于距离大于 3 kpc 的星团,GMM 的效果并不是很好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Using GMM in open cluster membership: An insight

The unprecedented precision of Gaia has led to a paradigm shift in membership determination of open clusters where a variety of machine learning (ML) models can be employed. In this paper, we apply the unsupervised Gaussian Mixture Model (GMM) to a sample of thirteen clusters with varying ages (logt 6.38-9.64) and distances (441-5183 pc) from Gaia DR3 data to determine membership. We use ASteca to determine parameters for the clusters from our revised membership data. We define a quantifiable metric Modified Silhouette Score (MSS) to evaluate its performance. We study the dependence of MSS on age, distance, extinction, galactic latitude and longitude, and other parameters to find the particular cases when GMM seems to be more efficient than other methods. We compared GMM for nine clusters with varying ages but we did not find any significant differences between GMM performance for younger and older clusters. But we found a moderate correlation between GMM performance and the cluster distance, where GMM works better for closer clusters. We find that GMM does not work very well for clusters at distances larger than 3 kpc.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Astronomy and Computing
Astronomy and Computing ASTRONOMY & ASTROPHYSICSCOMPUTER SCIENCE,-COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
CiteScore
4.10
自引率
8.00%
发文量
67
期刊介绍: Astronomy and Computing is a peer-reviewed journal that focuses on the broad area between astronomy, computer science and information technology. The journal aims to publish the work of scientists and (software) engineers in all aspects of astronomical computing, including the collection, analysis, reduction, visualisation, preservation and dissemination of data, and the development of astronomical software and simulations. The journal covers applications for academic computer science techniques to astronomy, as well as novel applications of information technologies within astronomy.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信