通过 CTAB 辅助电沉积改进 MnO2 纳米片的结构特征和超级电容器性能

IF 4.8 2区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Ziming Wang, Hanbo Wang, Dongyu Pei, Sheng Wan, Zhitian Fan, Mingrui Yu, Haiyan Lu
{"title":"通过 CTAB 辅助电沉积改进 MnO2 纳米片的结构特征和超级电容器性能","authors":"Ziming Wang, Hanbo Wang, Dongyu Pei, Sheng Wan, Zhitian Fan, Mingrui Yu, Haiyan Lu","doi":"10.1016/j.pnsc.2023.12.013","DOIUrl":null,"url":null,"abstract":"<p>MnO<sub>2</sub><span><span> stands out as a highly promising material for electrochemical capacitors due to its impressive theoretical capacitance, cost-effectiveness, eco-friendliness, and abundant natural availability. Yet, its inherent low conductivity and structural fragility result in restricted specific capacitance and a shortened cycle life, posing a notable obstacle to its advancement. Through the introduction of CTAB (cetyltrimethylammonium bromide), we successfully tailored the </span>surface morphology of the electrode material, yielding a robust and highly conductive layered MnO</span><sub>2</sub> electrode material. The MnO<sub>2</sub><span>/CTAB composite synthesized through a simple electrodeposition method exhibits outstanding performance, achieving a specific capacitance of 665 ​F ​g</span><sup>−1</sup> ​at 1 ​A ​g<sup>−1</sup>. Even after 30,000 cycles, it maintains 92.13% capacitance. The performance improvement is primarily attributed to increased conductivity, and additional electrochemically active sites. Additionally, the assembled MnO<sub>2</sub>/CTAB//AC capacitor (ACs) achieves a specific capacitance of 70.06 ​F ​g<sup>−1</sup> ​at 1 ​A ​g<sup>−1</sup>, operating at a voltage of 1.8 ​V. At a power density of 563.36 ​W ​kg<sup>-1</sup><span>, it reaches an energy density of 35.21 ​Wh kg</span><sup>-1</sup><span>. This work provides an effective approach for high-performance electrode of supercapacitor.</span></p>","PeriodicalId":20742,"journal":{"name":"Progress in Natural Science: Materials International","volume":null,"pages":null},"PeriodicalIF":4.8000,"publicationDate":"2024-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Refinement of structural characteristics and supercapacitor performance of MnO2 nanosheets via CTAB-assisted electrodeposition\",\"authors\":\"Ziming Wang, Hanbo Wang, Dongyu Pei, Sheng Wan, Zhitian Fan, Mingrui Yu, Haiyan Lu\",\"doi\":\"10.1016/j.pnsc.2023.12.013\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>MnO<sub>2</sub><span><span> stands out as a highly promising material for electrochemical capacitors due to its impressive theoretical capacitance, cost-effectiveness, eco-friendliness, and abundant natural availability. Yet, its inherent low conductivity and structural fragility result in restricted specific capacitance and a shortened cycle life, posing a notable obstacle to its advancement. Through the introduction of CTAB (cetyltrimethylammonium bromide), we successfully tailored the </span>surface morphology of the electrode material, yielding a robust and highly conductive layered MnO</span><sub>2</sub> electrode material. The MnO<sub>2</sub><span>/CTAB composite synthesized through a simple electrodeposition method exhibits outstanding performance, achieving a specific capacitance of 665 ​F ​g</span><sup>−1</sup> ​at 1 ​A ​g<sup>−1</sup>. Even after 30,000 cycles, it maintains 92.13% capacitance. The performance improvement is primarily attributed to increased conductivity, and additional electrochemically active sites. Additionally, the assembled MnO<sub>2</sub>/CTAB//AC capacitor (ACs) achieves a specific capacitance of 70.06 ​F ​g<sup>−1</sup> ​at 1 ​A ​g<sup>−1</sup>, operating at a voltage of 1.8 ​V. At a power density of 563.36 ​W ​kg<sup>-1</sup><span>, it reaches an energy density of 35.21 ​Wh kg</span><sup>-1</sup><span>. This work provides an effective approach for high-performance electrode of supercapacitor.</span></p>\",\"PeriodicalId\":20742,\"journal\":{\"name\":\"Progress in Natural Science: Materials International\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2024-01-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Progress in Natural Science: Materials International\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1016/j.pnsc.2023.12.013\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Natural Science: Materials International","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.pnsc.2023.12.013","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

二氧化锰因其出色的理论电容、成本效益、生态友好性和丰富的天然可用性而成为极具潜力的电化学电容器材料。然而,其固有的低电导率和结构脆性导致比电容受限和循环寿命缩短,对其发展构成了明显的障碍。通过引入 CTAB(十六烷基三甲基溴化铵),我们成功地调整了电极材料的表面形态,得到了一种坚固且高导电性的层状 MnO2 电极材料。通过简单的电沉积方法合成的 MnO2/CTAB 复合材料表现出卓越的性能,在 1 A g-1 的条件下,比电容达到 665 F g-1。即使经过 30,000 次循环,它仍能保持 92.13% 的电容率。性能的提高主要归功于电导率的提高和电化学活性位点的增加。此外,组装好的 MnO2/CTAB//AC 电容器(AC)在 1 A g-1 的电压下工作时,比电容达到 70.06 F g-1,电压为 1.8 V。功率密度为 563.36 W kg-1,能量密度为 35.21 Wh kg-1。这项工作为超级电容器的高性能电极提供了一种有效的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Refinement of structural characteristics and supercapacitor performance of MnO2 nanosheets via CTAB-assisted electrodeposition

MnO2 stands out as a highly promising material for electrochemical capacitors due to its impressive theoretical capacitance, cost-effectiveness, eco-friendliness, and abundant natural availability. Yet, its inherent low conductivity and structural fragility result in restricted specific capacitance and a shortened cycle life, posing a notable obstacle to its advancement. Through the introduction of CTAB (cetyltrimethylammonium bromide), we successfully tailored the surface morphology of the electrode material, yielding a robust and highly conductive layered MnO2 electrode material. The MnO2/CTAB composite synthesized through a simple electrodeposition method exhibits outstanding performance, achieving a specific capacitance of 665 ​F ​g−1 ​at 1 ​A ​g−1. Even after 30,000 cycles, it maintains 92.13% capacitance. The performance improvement is primarily attributed to increased conductivity, and additional electrochemically active sites. Additionally, the assembled MnO2/CTAB//AC capacitor (ACs) achieves a specific capacitance of 70.06 ​F ​g−1 ​at 1 ​A ​g−1, operating at a voltage of 1.8 ​V. At a power density of 563.36 ​W ​kg-1, it reaches an energy density of 35.21 ​Wh kg-1. This work provides an effective approach for high-performance electrode of supercapacitor.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.60
自引率
2.10%
发文量
2812
审稿时长
49 days
期刊介绍: Progress in Natural Science: Materials International provides scientists and engineers throughout the world with a central vehicle for the exchange and dissemination of basic theoretical studies and applied research of advanced materials. The emphasis is placed on original research, both analytical and experimental, which is of permanent interest to engineers and scientists, covering all aspects of new materials and technologies, such as, energy and environmental materials; advanced structural materials; advanced transportation materials, functional and electronic materials; nano-scale and amorphous materials; health and biological materials; materials modeling and simulation; materials characterization; and so on. The latest research achievements and innovative papers in basic theoretical studies and applied research of material science will be carefully selected and promptly reported. Thus, the aim of this Journal is to serve the global materials science and technology community with the latest research findings. As a service to readers, an international bibliography of recent publications in advanced materials is published bimonthly.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信