中国滁州市水库水质和营养状态分析

IF 2.5 3区 环境科学与生态学 Q2 ECOLOGY
Ecohydrology Pub Date : 2024-01-24 DOI:10.1002/eco.2629
Lei Zhang, Zijun Zheng, Feng Xu, Ying Zou, Tao Zeng, Shuo Li, Shuqi Fang
{"title":"中国滁州市水库水质和营养状态分析","authors":"Lei Zhang,&nbsp;Zijun Zheng,&nbsp;Feng Xu,&nbsp;Ying Zou,&nbsp;Tao Zeng,&nbsp;Shuo Li,&nbsp;Shuqi Fang","doi":"10.1002/eco.2629","DOIUrl":null,"url":null,"abstract":"<p>Reservoir is a vital tool for human utilization of water resources, and the deterioration of its water quality can seriously threaten the water cycle and sustainable urban development. However, there are relatively few studies in academia that analyse and evaluate the water quality of multiple reservoirs at the same time. To address this knowledge deficit, we collected 108 water samples from three different reservoirs in Chuzhou City for 36 months (from 2019 to 2021), explored the drivers of changes in water quality parameters over time and the extent of eutrophication. Our results indicated that the water quality of the reservoirs was deteriorating during the study period, among which Huanglishu Reservoir and Shahe Reservoir reached mild eutrophic status, and both had higher eutrophication levels than Chengxi Reservoir. Secchi depth, total nitrogen and total phosphorus were the principal factors inducing eutrophication. The biassed utilization of reservoir functions was the major contributor to the discrepancy in the degree of eutrophication. Furthermore, Pearson correlation analysis revealed that there are significant correlations between many water quality parameters. Cluster analysis grouped the 12 months of each year into three clusters (stable water level period, rainy season high flow period and winter low flow period). Based on this, analysis of variance showed that most water quality parameters varied considerably between the clusters. Collectively, this study identified the actual water quality conditions of three reservoirs in Chuzhou City and provided guidance for local water quality management and environmental protection.</p>","PeriodicalId":55169,"journal":{"name":"Ecohydrology","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2024-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analysis of water quality and trophic status of reservoirs in Chuzhou City, China\",\"authors\":\"Lei Zhang,&nbsp;Zijun Zheng,&nbsp;Feng Xu,&nbsp;Ying Zou,&nbsp;Tao Zeng,&nbsp;Shuo Li,&nbsp;Shuqi Fang\",\"doi\":\"10.1002/eco.2629\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Reservoir is a vital tool for human utilization of water resources, and the deterioration of its water quality can seriously threaten the water cycle and sustainable urban development. However, there are relatively few studies in academia that analyse and evaluate the water quality of multiple reservoirs at the same time. To address this knowledge deficit, we collected 108 water samples from three different reservoirs in Chuzhou City for 36 months (from 2019 to 2021), explored the drivers of changes in water quality parameters over time and the extent of eutrophication. Our results indicated that the water quality of the reservoirs was deteriorating during the study period, among which Huanglishu Reservoir and Shahe Reservoir reached mild eutrophic status, and both had higher eutrophication levels than Chengxi Reservoir. Secchi depth, total nitrogen and total phosphorus were the principal factors inducing eutrophication. The biassed utilization of reservoir functions was the major contributor to the discrepancy in the degree of eutrophication. Furthermore, Pearson correlation analysis revealed that there are significant correlations between many water quality parameters. Cluster analysis grouped the 12 months of each year into three clusters (stable water level period, rainy season high flow period and winter low flow period). Based on this, analysis of variance showed that most water quality parameters varied considerably between the clusters. Collectively, this study identified the actual water quality conditions of three reservoirs in Chuzhou City and provided guidance for local water quality management and environmental protection.</p>\",\"PeriodicalId\":55169,\"journal\":{\"name\":\"Ecohydrology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-01-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ecohydrology\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/eco.2629\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecohydrology","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/eco.2629","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

水库是人类利用水资源的重要工具,其水质的恶化会严重威胁水循环和城市的可持续发展。然而,学术界同时分析和评估多个水库水质的研究相对较少。为了弥补这一知识空白,我们从滁州市三座不同的水库采集了108个水样,历时36个月(从2019年到2021年),探讨了水质参数随时间变化的驱动因素以及富营养化的程度。结果表明,研究期间水库水质呈恶化趋势,其中黄栗墅水库和沙河水库达到轻度富营养化,且富营养化程度均高于城西水库。水深、总氮和总磷是导致富营养化的主要因素。水库功能利用的偏差是造成富营养化程度差异的主要原因。此外,皮尔逊相关分析表明,许多水质参数之间存在显著的相关性。聚类分析将每年的 12 个月分为三组(水位稳定期、雨季大流量期和冬季小流量期)。在此基础上,方差分析显示,大多数水质参数在不同组群之间存在很大差异。总之,本研究确定了滁州市三座水库的实际水质状况,为当地的水质管理和环境保护提供了指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Analysis of water quality and trophic status of reservoirs in Chuzhou City, China

Reservoir is a vital tool for human utilization of water resources, and the deterioration of its water quality can seriously threaten the water cycle and sustainable urban development. However, there are relatively few studies in academia that analyse and evaluate the water quality of multiple reservoirs at the same time. To address this knowledge deficit, we collected 108 water samples from three different reservoirs in Chuzhou City for 36 months (from 2019 to 2021), explored the drivers of changes in water quality parameters over time and the extent of eutrophication. Our results indicated that the water quality of the reservoirs was deteriorating during the study period, among which Huanglishu Reservoir and Shahe Reservoir reached mild eutrophic status, and both had higher eutrophication levels than Chengxi Reservoir. Secchi depth, total nitrogen and total phosphorus were the principal factors inducing eutrophication. The biassed utilization of reservoir functions was the major contributor to the discrepancy in the degree of eutrophication. Furthermore, Pearson correlation analysis revealed that there are significant correlations between many water quality parameters. Cluster analysis grouped the 12 months of each year into three clusters (stable water level period, rainy season high flow period and winter low flow period). Based on this, analysis of variance showed that most water quality parameters varied considerably between the clusters. Collectively, this study identified the actual water quality conditions of three reservoirs in Chuzhou City and provided guidance for local water quality management and environmental protection.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Ecohydrology
Ecohydrology 环境科学-生态学
CiteScore
5.10
自引率
7.70%
发文量
116
审稿时长
24 months
期刊介绍: Ecohydrology is an international journal publishing original scientific and review papers that aim to improve understanding of processes at the interface between ecology and hydrology and associated applications related to environmental management. Ecohydrology seeks to increase interdisciplinary insights by placing particular emphasis on interactions and associated feedbacks in both space and time between ecological systems and the hydrological cycle. Research contributions are solicited from disciplines focusing on the physical, ecological, biological, biogeochemical, geomorphological, drainage basin, mathematical and methodological aspects of ecohydrology. Research in both terrestrial and aquatic systems is of interest provided it explicitly links ecological systems and the hydrologic cycle; research such as aquatic ecological, channel engineering, or ecological or hydrological modelling is less appropriate for the journal unless it specifically addresses the criteria above. Manuscripts describing individual case studies are of interest in cases where broader insights are discussed beyond site- and species-specific results.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信