用于增强酸性水电解的氧化钌多元电子结构调制

Xiaotong Wu, Chao Lin, Weibo Hu, Chao Fu, Lei Tan, Haifeng Wang, Faiza Meharban, Xiangxiang Pan, Pan Fu, Han-Don Um, Qi Xiao, Xiaopeng Li, Miho Yamauchi, Wei Luo
{"title":"用于增强酸性水电解的氧化钌多元电子结构调制","authors":"Xiaotong Wu, Chao Lin, Weibo Hu, Chao Fu, Lei Tan, Haifeng Wang, Faiza Meharban, Xiangxiang Pan, Pan Fu, Han-Don Um, Qi Xiao, Xiaopeng Li, Miho Yamauchi, Wei Luo","doi":"10.1002/sstr.202300518","DOIUrl":null,"url":null,"abstract":"Proton exchange membrane water electrolysis (PEMWE) with high-purity H<sub>2</sub> and O<sub>2</sub> products and swift response to electricity fluctuation is of great interest for renewable energy, chemical and pharmaceutical industries. Ruthenium oxide shows promise as an alternative to iridium oxide catalysts in PEMWE but suffers from severe anodic corrosion. Herein, a pluralistic electronic structure modulation approach is presented to address the instability issue of Ru, by in situ growing Mn<sub><i>x</i></sub>Ru<sub>1−<i>x</i></sub>O<sub>2</sub> solid solution on MnO<sub>2</sub>, coated carbon fibers (Mn<sub><i>x</i></sub>Ru<sub>1−<i>x</i></sub>O<sub>2</sub>/MnO<sub>2</sub>/CFs). Due to higher ion electronegativity, Mn dopants in the Mn<sub><i>x</i></sub>Ru<sub>1−<i>x</i></sub>O<sub>2</sub> solid solution accept electrons, activating the Ru site. Simultaneously, the MnO<sub>2</sub> support donates electrons to prevent Ru site overoxidation and dissolution due to its lower work function than the Mn<sub><i>x</i></sub>Ru<sub>1−<i>x</i></sub>O<sub>2</sub> solid solution. As a result, the Mn<sub><i>x</i></sub>Ru<sub>1−<i>x</i></sub>O<sub>2</sub>/MnO<sub>2</sub>/CFs catalyst exhibits a low overpotential of 161 mV at 10 mA cm<sup>−2</sup> and a remarkable stability exceeding 600 h. Profiting by its improved oxygen evolution reaction (OER) kinetic activity, the Mn<sub><i>x</i></sub>Ru<sub>1−<i>x</i></sub>O<sub>2</sub>/MnO<sub>2</sub>/CF-based PEMWE shows a low cell voltage of 1.9 V at 2 A cm<sup>−2</sup>, and stably operate at current density of 500 mA cm<sup>−2</sup> for 24 h. This work shows the potential of the pluralistic electronic structure modulation to boost activity and stability of Ru-based acidic OER electrocatalysts.","PeriodicalId":21841,"journal":{"name":"Small Structures","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Pluralistic Electronic Structure Modulation of Ruthenium Oxide for Enhanced Acidic Water Electrolysis\",\"authors\":\"Xiaotong Wu, Chao Lin, Weibo Hu, Chao Fu, Lei Tan, Haifeng Wang, Faiza Meharban, Xiangxiang Pan, Pan Fu, Han-Don Um, Qi Xiao, Xiaopeng Li, Miho Yamauchi, Wei Luo\",\"doi\":\"10.1002/sstr.202300518\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Proton exchange membrane water electrolysis (PEMWE) with high-purity H<sub>2</sub> and O<sub>2</sub> products and swift response to electricity fluctuation is of great interest for renewable energy, chemical and pharmaceutical industries. Ruthenium oxide shows promise as an alternative to iridium oxide catalysts in PEMWE but suffers from severe anodic corrosion. Herein, a pluralistic electronic structure modulation approach is presented to address the instability issue of Ru, by in situ growing Mn<sub><i>x</i></sub>Ru<sub>1−<i>x</i></sub>O<sub>2</sub> solid solution on MnO<sub>2</sub>, coated carbon fibers (Mn<sub><i>x</i></sub>Ru<sub>1−<i>x</i></sub>O<sub>2</sub>/MnO<sub>2</sub>/CFs). Due to higher ion electronegativity, Mn dopants in the Mn<sub><i>x</i></sub>Ru<sub>1−<i>x</i></sub>O<sub>2</sub> solid solution accept electrons, activating the Ru site. Simultaneously, the MnO<sub>2</sub> support donates electrons to prevent Ru site overoxidation and dissolution due to its lower work function than the Mn<sub><i>x</i></sub>Ru<sub>1−<i>x</i></sub>O<sub>2</sub> solid solution. As a result, the Mn<sub><i>x</i></sub>Ru<sub>1−<i>x</i></sub>O<sub>2</sub>/MnO<sub>2</sub>/CFs catalyst exhibits a low overpotential of 161 mV at 10 mA cm<sup>−2</sup> and a remarkable stability exceeding 600 h. Profiting by its improved oxygen evolution reaction (OER) kinetic activity, the Mn<sub><i>x</i></sub>Ru<sub>1−<i>x</i></sub>O<sub>2</sub>/MnO<sub>2</sub>/CF-based PEMWE shows a low cell voltage of 1.9 V at 2 A cm<sup>−2</sup>, and stably operate at current density of 500 mA cm<sup>−2</sup> for 24 h. This work shows the potential of the pluralistic electronic structure modulation to boost activity and stability of Ru-based acidic OER electrocatalysts.\",\"PeriodicalId\":21841,\"journal\":{\"name\":\"Small Structures\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Small Structures\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/sstr.202300518\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small Structures","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/sstr.202300518","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

质子交换膜水电解法(PEMWE)可产生高纯度的 H2 和 O2 产物,并能对电力波动做出快速反应,这引起了可再生能源、化工和制药行业的极大兴趣。在 PEMWE 中,氧化钌有望成为氧化铱催化剂的替代品,但存在严重的阳极腐蚀问题。本文提出了一种多元电子结构调制方法,通过在涂有碳纤维的二氧化锰上原位生长 MnxRu1-xO2 固溶体(MnxRu1-xO2/MnO2/CFs)来解决 Ru 的不稳定性问题。由于离子电负性较高,MnxRu1-xO2 固溶体中的锰掺杂物会接受电子,从而激活 Ru 位点。与此同时,由于 MnxRu1-xO2 固溶体的功函数比 MnO2 支持物低,因此 MnO2 支持物会捐献电子以防止 Ru 位点过氧化和溶解。因此,MnxRu1-xO2/MnO2/CFs 催化剂在 10 mA cm-2 电流条件下的过电位低至 161 mV,并且具有超过 600 小时的卓越稳定性。这项工作显示了多元电子结构调制在提高 Ru 基酸性 OER 电催化剂的活性和稳定性方面的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Pluralistic Electronic Structure Modulation of Ruthenium Oxide for Enhanced Acidic Water Electrolysis

Pluralistic Electronic Structure Modulation of Ruthenium Oxide for Enhanced Acidic Water Electrolysis
Proton exchange membrane water electrolysis (PEMWE) with high-purity H2 and O2 products and swift response to electricity fluctuation is of great interest for renewable energy, chemical and pharmaceutical industries. Ruthenium oxide shows promise as an alternative to iridium oxide catalysts in PEMWE but suffers from severe anodic corrosion. Herein, a pluralistic electronic structure modulation approach is presented to address the instability issue of Ru, by in situ growing MnxRu1−xO2 solid solution on MnO2, coated carbon fibers (MnxRu1−xO2/MnO2/CFs). Due to higher ion electronegativity, Mn dopants in the MnxRu1−xO2 solid solution accept electrons, activating the Ru site. Simultaneously, the MnO2 support donates electrons to prevent Ru site overoxidation and dissolution due to its lower work function than the MnxRu1−xO2 solid solution. As a result, the MnxRu1−xO2/MnO2/CFs catalyst exhibits a low overpotential of 161 mV at 10 mA cm−2 and a remarkable stability exceeding 600 h. Profiting by its improved oxygen evolution reaction (OER) kinetic activity, the MnxRu1−xO2/MnO2/CF-based PEMWE shows a low cell voltage of 1.9 V at 2 A cm−2, and stably operate at current density of 500 mA cm−2 for 24 h. This work shows the potential of the pluralistic electronic structure modulation to boost activity and stability of Ru-based acidic OER electrocatalysts.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
17.30
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信