Oluwaseyi Samuel Olanrewaju , Bernard R. Glick , Olubukola Oluranti Babalola
{"title":"以代谢组学为指导,利用有益微生物培育气候适应性作物","authors":"Oluwaseyi Samuel Olanrewaju , Bernard R. Glick , Olubukola Oluranti Babalola","doi":"10.1016/j.cbpa.2024.102427","DOIUrl":null,"url":null,"abstract":"<div><p>In the rhizosphere, plants and microbes communicate chemically, especially under environmental stress. Over millions of years, plants and their microbiome have coevolved, sharing various chemicals, including signaling molecules. This mutual exchange impacts bacterial communication and influences plant metabolism. Inter-kingdom signal crosstalk affects bacterial colonization and plant fitness. Beneficial microbes and their metabolomes offer eco-friendly ways to enhance plant resilience and agriculture. Plant metabolites are pivotal in this dynamic interaction between host plants and their interacting beneficial microbes. Understanding these associations is key to engineering a robust microbiome for stress mitigation and improved plant growth. This review explores mechanisms behind plant-microbe interactions, the role of beneficial microbes and metabolomics, and the practical applications for addressing climate change's impact on agriculture. Integrating beneficial microbes' activities and metabolomics' application to study metabolome-driven interaction between host plants and their corresponding beneficial microbes holds promise for enhancing crop resilience and productivity.</p></div>","PeriodicalId":291,"journal":{"name":"Current Opinion in Chemical Biology","volume":"79 ","pages":"Article 102427"},"PeriodicalIF":6.9000,"publicationDate":"2024-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1367593124000036/pdfft?md5=7b85799eecb6676f2643ba8c449556c5&pid=1-s2.0-S1367593124000036-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Metabolomics-guided utilization of beneficial microbes for climate-resilient crops\",\"authors\":\"Oluwaseyi Samuel Olanrewaju , Bernard R. Glick , Olubukola Oluranti Babalola\",\"doi\":\"10.1016/j.cbpa.2024.102427\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In the rhizosphere, plants and microbes communicate chemically, especially under environmental stress. Over millions of years, plants and their microbiome have coevolved, sharing various chemicals, including signaling molecules. This mutual exchange impacts bacterial communication and influences plant metabolism. Inter-kingdom signal crosstalk affects bacterial colonization and plant fitness. Beneficial microbes and their metabolomes offer eco-friendly ways to enhance plant resilience and agriculture. Plant metabolites are pivotal in this dynamic interaction between host plants and their interacting beneficial microbes. Understanding these associations is key to engineering a robust microbiome for stress mitigation and improved plant growth. This review explores mechanisms behind plant-microbe interactions, the role of beneficial microbes and metabolomics, and the practical applications for addressing climate change's impact on agriculture. Integrating beneficial microbes' activities and metabolomics' application to study metabolome-driven interaction between host plants and their corresponding beneficial microbes holds promise for enhancing crop resilience and productivity.</p></div>\",\"PeriodicalId\":291,\"journal\":{\"name\":\"Current Opinion in Chemical Biology\",\"volume\":\"79 \",\"pages\":\"Article 102427\"},\"PeriodicalIF\":6.9000,\"publicationDate\":\"2024-01-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1367593124000036/pdfft?md5=7b85799eecb6676f2643ba8c449556c5&pid=1-s2.0-S1367593124000036-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Opinion in Chemical Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1367593124000036\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Opinion in Chemical Biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1367593124000036","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Metabolomics-guided utilization of beneficial microbes for climate-resilient crops
In the rhizosphere, plants and microbes communicate chemically, especially under environmental stress. Over millions of years, plants and their microbiome have coevolved, sharing various chemicals, including signaling molecules. This mutual exchange impacts bacterial communication and influences plant metabolism. Inter-kingdom signal crosstalk affects bacterial colonization and plant fitness. Beneficial microbes and their metabolomes offer eco-friendly ways to enhance plant resilience and agriculture. Plant metabolites are pivotal in this dynamic interaction between host plants and their interacting beneficial microbes. Understanding these associations is key to engineering a robust microbiome for stress mitigation and improved plant growth. This review explores mechanisms behind plant-microbe interactions, the role of beneficial microbes and metabolomics, and the practical applications for addressing climate change's impact on agriculture. Integrating beneficial microbes' activities and metabolomics' application to study metabolome-driven interaction between host plants and their corresponding beneficial microbes holds promise for enhancing crop resilience and productivity.
期刊介绍:
COCHBI (Current Opinion in Chemical Biology) is a systematic review journal designed to offer specialists a unique and educational platform. Its goal is to help professionals stay informed about the growing volume of information in the field of Chemical Biology through systematic reviews.