波前对耗散介质中非线性波的影响

IF 0.6 4区 物理与天体物理 Q4 MECHANICS
V. A. Bazylenko,  O. V. Rudenko
{"title":"波前对耗散介质中非线性波的影响","authors":"V. A. Bazylenko,&nbsp; O. V. Rudenko","doi":"10.1134/S1028335823050038","DOIUrl":null,"url":null,"abstract":"<p>A method for generating solutions of the Burgers equation, which describe the interaction of waves in a nonlinear dissipative medium with a linearly growing wavefront, is proposed. The exact solutions describing these interactions and symmetry properties of the equation are used. It is shown that the rising wavefront is able to compete with the dissipation and compress the signal in time. On the contrary, the wavefront with the decreasing steepness “stretches” the signal.</p>","PeriodicalId":533,"journal":{"name":"Doklady Physics","volume":"68 5","pages":"141 - 143"},"PeriodicalIF":0.6000,"publicationDate":"2024-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Impact of the Wavefront on a Nonlinear Wave in a Dissipative Medium\",\"authors\":\"V. A. Bazylenko,&nbsp; O. V. Rudenko\",\"doi\":\"10.1134/S1028335823050038\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>A method for generating solutions of the Burgers equation, which describe the interaction of waves in a nonlinear dissipative medium with a linearly growing wavefront, is proposed. The exact solutions describing these interactions and symmetry properties of the equation are used. It is shown that the rising wavefront is able to compete with the dissipation and compress the signal in time. On the contrary, the wavefront with the decreasing steepness “stretches” the signal.</p>\",\"PeriodicalId\":533,\"journal\":{\"name\":\"Doklady Physics\",\"volume\":\"68 5\",\"pages\":\"141 - 143\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2024-01-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Doklady Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S1028335823050038\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Doklady Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1134/S1028335823050038","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

摘要

摘要 提出了一种生成布尔格斯方程解的方法,该方程描述了非线性耗散介质中波与线性增长波面的相互作用。使用了描述这些相互作用的精确解以及方程的对称特性。结果表明,上升的波前能够与耗散竞争,并在时间上压缩信号。相反,陡度下降的波面会 "拉伸 "信号。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Impact of the Wavefront on a Nonlinear Wave in a Dissipative Medium

A method for generating solutions of the Burgers equation, which describe the interaction of waves in a nonlinear dissipative medium with a linearly growing wavefront, is proposed. The exact solutions describing these interactions and symmetry properties of the equation are used. It is shown that the rising wavefront is able to compete with the dissipation and compress the signal in time. On the contrary, the wavefront with the decreasing steepness “stretches” the signal.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Doklady Physics
Doklady Physics 物理-力学
CiteScore
1.40
自引率
12.50%
发文量
12
审稿时长
4-8 weeks
期刊介绍: Doklady Physics is a journal that publishes new research in physics of great significance. Initially the journal was a forum of the Russian Academy of Science and published only best contributions from Russia in the form of short articles. Now the journal welcomes submissions from any country in the English or Russian language. Every manuscript must be recommended by Russian or foreign members of the Russian Academy of Sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信