梯度下降法的新型步长

IF 0.8 4区 管理学 Q4 OPERATIONS RESEARCH & MANAGEMENT SCIENCE
Pham Thi Hoai , Nguyen The Vinh , Nguyen Phung Hai Chung
{"title":"梯度下降法的新型步长","authors":"Pham Thi Hoai ,&nbsp;Nguyen The Vinh ,&nbsp;Nguyen Phung Hai Chung","doi":"10.1016/j.orl.2024.107072","DOIUrl":null,"url":null,"abstract":"<div><p>We propose a novel adaptive stepsize for the gradient descent scheme to solve unconstrained nonlinear optimization problems. With the convex and smooth objective satisfying locally Lipschitz gradient we obtain the complexity <span><math><mi>O</mi><mrow><mo>(</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mi>k</mi></mrow></mfrac><mo>)</mo></mrow></math></span> of <span><math><mi>f</mi><mo>(</mo><msup><mrow><mi>x</mi></mrow><mrow><mi>k</mi></mrow></msup><mo>)</mo><mo>−</mo><msub><mrow><mi>f</mi></mrow><mrow><mo>⁎</mo></mrow></msub></math></span><span> at most. By using the idea of the new stepsize, we propose another new algorithm based on the projected gradient for solving a class of nonconvex optimization problems over a closed convex set. The computational experiments show the efficiency of the new method.</span></p></div>","PeriodicalId":54682,"journal":{"name":"Operations Research Letters","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2024-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A novel stepsize for gradient descent method\",\"authors\":\"Pham Thi Hoai ,&nbsp;Nguyen The Vinh ,&nbsp;Nguyen Phung Hai Chung\",\"doi\":\"10.1016/j.orl.2024.107072\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We propose a novel adaptive stepsize for the gradient descent scheme to solve unconstrained nonlinear optimization problems. With the convex and smooth objective satisfying locally Lipschitz gradient we obtain the complexity <span><math><mi>O</mi><mrow><mo>(</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mi>k</mi></mrow></mfrac><mo>)</mo></mrow></math></span> of <span><math><mi>f</mi><mo>(</mo><msup><mrow><mi>x</mi></mrow><mrow><mi>k</mi></mrow></msup><mo>)</mo><mo>−</mo><msub><mrow><mi>f</mi></mrow><mrow><mo>⁎</mo></mrow></msub></math></span><span> at most. By using the idea of the new stepsize, we propose another new algorithm based on the projected gradient for solving a class of nonconvex optimization problems over a closed convex set. The computational experiments show the efficiency of the new method.</span></p></div>\",\"PeriodicalId\":54682,\"journal\":{\"name\":\"Operations Research Letters\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-01-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Operations Research Letters\",\"FirstCategoryId\":\"91\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167637724000087\",\"RegionNum\":4,\"RegionCategory\":\"管理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"OPERATIONS RESEARCH & MANAGEMENT SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Operations Research Letters","FirstCategoryId":"91","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167637724000087","RegionNum":4,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"OPERATIONS RESEARCH & MANAGEMENT SCIENCE","Score":null,"Total":0}
引用次数: 0

摘要

我们为梯度下降方案提出了一种新的自适应步长,用于解决无约束非线性优化问题。在凸平滑目标满足局部 Lipschitz 梯度的情况下,我们最多可以得到 f(xk)-f⁎ 的复杂度 O(1k)。利用新步长的思想,我们提出了另一种基于投影梯度的新算法,用于求解封闭凸集上的一类非凸优化问题。计算实验证明了新方法的高效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A novel stepsize for gradient descent method

We propose a novel adaptive stepsize for the gradient descent scheme to solve unconstrained nonlinear optimization problems. With the convex and smooth objective satisfying locally Lipschitz gradient we obtain the complexity O(1k) of f(xk)f at most. By using the idea of the new stepsize, we propose another new algorithm based on the projected gradient for solving a class of nonconvex optimization problems over a closed convex set. The computational experiments show the efficiency of the new method.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Operations Research Letters
Operations Research Letters 管理科学-运筹学与管理科学
CiteScore
2.10
自引率
9.10%
发文量
111
审稿时长
83 days
期刊介绍: Operations Research Letters is committed to the rapid review and fast publication of short articles on all aspects of operations research and analytics. Apart from a limitation to eight journal pages, quality, originality, relevance and clarity are the only criteria for selecting the papers to be published. ORL covers the broad field of optimization, stochastic models and game theory. Specific areas of interest include networks, routing, location, queueing, scheduling, inventory, reliability, and financial engineering. We wish to explore interfaces with other fields such as life sciences and health care, artificial intelligence and machine learning, energy distribution, and computational social sciences and humanities. Our traditional strength is in methodology, including theory, modelling, algorithms and computational studies. We also welcome novel applications and concise literature reviews.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信